【摘要】一元二次方程的應(yīng)用祁東縣靈官鎮(zhèn)大同市中學(xué)龍貴華【教學(xué)目標】?1、使學(xué)生會用列一元二次方程的方法解決有關(guān)商品的銷售問題。?2、正確解方程并能根據(jù)具體問題的實際意義,檢驗結(jié)果的合理性。?3、通過用一元二次方程解決身邊的實際問題,體會數(shù)學(xué)知識應(yīng)用的價值,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識?!窘虒W(xué)重點】●學(xué)
2024-11-22 02:57
【摘要】一元二次方程合作學(xué)習(xí):列出下列問題中關(guān)于未知數(shù)x的方程:(1)把面積為4平方米的一張紙分割成如圖所示的正方形和長方形兩個部分,求正方形的邊長.設(shè)正方形的邊長為x,可列出方程為______________xxx3(2)據(jù)國家統(tǒng)計局公布的數(shù)據(jù),浙江省2020年全省實現(xiàn)生產(chǎn)總值6700億元,2020年生產(chǎn)總值達920
2024-11-22 00:49
【摘要】綠苑小區(qū)住宅設(shè)計,準備在每兩幢樓房之間,開辟面積為900平方米的一塊長方形綠地,并且長比寬多10米,那么綠地的長和寬各為多少?設(shè):長方形綠地的寬為x米,xx+10x(x+10)=900x2+10x-900=0由題意得:整理得:學(xué)校圖書館去年年底有圖書5萬冊,預(yù)計到明年年底增加到.求這兩年的年
2024-11-22 01:29
【摘要】一元二次方程復(fù)習(xí)例1將下列方程化為一般形式,并分別指出它們的二次項系數(shù)、一次項系數(shù)和常數(shù)項,并解方程1)2)2()43)(3(????xxx2)(x-2)(x+3)=83)22)2(4???xx例2:關(guān)于x的方程(m2
2025-08-16 00:39
【摘要】九年級數(shù)學(xué)(上)第二章一元二次方程(1)一元二次方程解法陽泉市義井中學(xué)高鐵牛配方法?我們通過配成完全平方式的方法,得到了一元二次方程的根,這種解一元二次方程的方法稱為配方法(solvingbypletingthesquare)回顧與復(fù)習(xí)1?平方根的意義:?完全平方式:式子a2±2
2024-11-06 22:28
【摘要】一元二次方程復(fù)習(xí)第一關(guān)知識要點說一說一元二次方程一元二次方程的定義一元二次方程的解法一元二次方程的應(yīng)用方程兩邊都是整式ax2+bx+c=0(a?0)只含有一個未知數(shù)求知數(shù)的最高次數(shù)是2配方法求根公式法直接開平方法
2025-07-17 23:39
【摘要】一元二次方程九年級上冊?本課是在學(xué)生已經(jīng)學(xué)習(xí)一元一次方程、分式方程的基礎(chǔ)上,進一步學(xué)習(xí)一元二次方程的有關(guān)概念.課件說明?學(xué)習(xí)目標:1.理解一元二次方程的概念;2.掌握一元二次方程的一般形式,正確認識二次項系數(shù)、一次項系數(shù)及常數(shù)項.?學(xué)習(xí)重點:一元二次方程的概念.課件說明1.創(chuàng)設(shè)
2024-11-21 23:38
【摘要】一元二次方程好()讀書,不好()讀書;好()讀書,不好()讀書解:設(shè)花圃的寬是則花圃的長是。,xmmx)219(?2m(1)正方形桌面的面積是2m2,求它的邊長?xm解:設(shè)正方形桌面的邊長是(2)矩形花圃一面靠墻,另外三面所圍的柵欄的總長度是19米。如果花圃的面積是24m2,
【摘要】2.1認識一元二次方程第1課時一元二次方程的概念知識點1:一元二次方程的概念1.下列方程是一元二次方程的是()A.x2+2x+y=1B.x2+1x-1=0C.(3x2-1)2-3=0D.3x2-12=x+
2024-11-10 05:43
【摘要】第一篇:一元二次方程解法教學(xué)反思 用公式法解一元二次方程教學(xué)反思 張春元 通過本節(jié)課的教學(xué),使我真正認識到了自己課堂教學(xué)的成功與失敗。對我今后課堂教學(xué)有了一定引領(lǐng)方向有了很大的幫助。下面我就談?wù)?..
2025-09-22 05:42
【摘要】?1、什么是一元二次方程?2、一元二次方程的一般形式是怎樣的?(第二課時)學(xué)習(xí)目標1、會判斷一元二次方程的根;2、關(guān)于X的“整式方程”的含義是什么?自學(xué)指導(dǎo)1、閱讀:P32————P332、思考:(1)(2)會判斷一元
2024-11-06 18:37
【摘要】1.x2-4=0;2.(x+1)2-25=0.解:(x+2)(x-2)=0,∴x+2=0,或x-2=0.∴x1=-2,x2=2.解:[(x+1)+5][(x+1)-5]=0,∴x+6=0,或x-4=0.∴x1=-6,x2=4.這種解法是不是解這兩個方程的最好方法?你是否還有其它方法來解?你能用因式分
2024-11-06 18:36
【摘要】一元二次方程解法復(fù)習(xí)課導(dǎo)學(xué)過程二次備課一、教學(xué)目標:1、掌握一元二次方程的四種解法,會根據(jù)方程的不同特點,靈活選用適當(dāng)?shù)姆椒ㄇ蠼夥匠獭?、方程求解過程中注重方式、方法的引導(dǎo),特殊到一般、字母表示數(shù)、整體代入等數(shù)學(xué)思想方法的滲透。3、培養(yǎng)學(xué)生概括、歸納總結(jié)能力。二、重點、難點:1重點:會根據(jù)不同的方程特點選用恰當(dāng)?shù)姆椒?,使解題過程簡單合理。
2025-04-16 12:45
【摘要】一元二次方程因式分解法課前參與(一)預(yù)習(xí)內(nèi)容:課本P17—19(二)知識回顧:因式分解:(1)xx422?=(2)9162?x=(3)442??aa=(4)232??aa=常見的
2024-12-09 10:55
【摘要】一元二次方程的解法專題訓(xùn)練例1、利用開平方法解下列方程4(x-3)2=25例2、利用配方法解下列方x=2x2-1例3、利用因式分解法解下列方程(x-2
2025-03-24 05:33