【摘要】T/oC246810O-2t/小時(shí)84121620246210141822學(xué)習(xí)目標(biāo):、減函數(shù)的定義。減函數(shù)。小明家年收入統(tǒng)計(jì)圖收入(萬元)年份302010人數(shù)(人)x市日
2025-11-09 08:43
【摘要】含絕對值不等式的解法復(fù)習(xí)回顧:1.絕對值的數(shù)學(xué)意義:??????????.0000時(shí),當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)aaaaaa的幾何意義是什么?的解集意義求出能否利用絕對值的幾何問題22)2)1.2??xx20?2是什
2025-08-05 18:19
【摘要】精品資源含絕對值不等式解法例說解含絕對值符號的不等式的基本思想是去掉絕對值符號,使不等式變?yōu)椴缓^對值符號的一般不等式,而后,其解法就與一般不等式相同.因此,掌握去掉絕對值符號的方法和途徑是解題關(guān)鍵.一、化歸定義法例1關(guān)于x的不等式|kx-1|≤5的解集為{x|-3≤x≤2},求k的值.思路點(diǎn)撥:按絕對值定義直接去掉絕對值符號后,由于k的取值不確定,要以k的不同取值
2025-06-19 08:43
【摘要】集合之間的關(guān)系南京市女子中專熊珺子集的概念:如果集合A的任意一個(gè)元素都是集合B的元素(若,則),則稱集合A是集合B的子集,記為,讀作“集合A包含于集合B”;或者記為,讀作“集
【摘要】含絕對值的不等式的解法一、基本解法與思想解含絕對值的不等式的基本思想是等價(jià)轉(zhuǎn)化,即采用正確的方法去掉絕對值符號轉(zhuǎn)化為不含絕對值的不等式來解,常用的方法有公式法、定義法、平方法。(一)、公式法:即利用與的解集求解。主要知識: 1、絕對值的幾何意義:是指數(shù)軸上點(diǎn)到原點(diǎn)的距離;是指數(shù)軸上,兩點(diǎn)間的距離.。2、與型的不等式的解法。當(dāng)時(shí),不等式的解集是不等式的解集是
2025-06-19 08:29
【摘要】精品資源含絕對值不等式解法要點(diǎn)歸納解含絕對值符號的不等式的基本思想是去掉絕對值符號,使不等式變?yōu)椴缓^對值符號的一般不等式,而后,其解法就與一般不等式相同.因此,掌握去掉絕對值符號的方法和途徑是解題關(guān)鍵.一、含有絕對值不等式的幾種去掉絕對值符號的常用方法去掉絕對值符號的方法有很多,其中常用的方法有:1.定義法去掉絕對值符號根據(jù)實(shí)數(shù)絕對的意義,即|x|=,有:|
2025-06-25 21:31
【摘要】§不等式的基本性質(zhì)讀書改變命運(yùn)!刻苦成就事業(yè)!!態(tài)度決定一切!??!由a+5=b+5,能得到a=b?由–8a=–8b,能得到a=b?由5a=5b,能得到a=b?由a-5=b-5,能得到a=b?由2x+a=y+a,能得到2x=y?挑戰(zhàn)“記憶”:還記得
2025-11-09 15:32
【摘要】標(biāo)題人與人的年齡大小、高矮胖瘦,物與物的形狀結(jié)構(gòu),事與事的成因與結(jié)果的不同等等都表現(xiàn)出不等關(guān)系,這表明現(xiàn)實(shí)世界中的量,不等是普遍的、絕對的,而相等則是局部的、相對的。不等式知識貫穿整個(gè)高中數(shù)學(xué),也是高等數(shù)學(xué)的基礎(chǔ)和工具,一直是高考的重點(diǎn)內(nèi)容,占相當(dāng)大的比重。不等式具有應(yīng)用廣泛、變換靈活的特點(diǎn)。引入:一
2025-11-09 01:25
【摘要】分式不等式的解法(1)x2-2x-8≥0.復(fù)習(xí):一元二次不等式的解法(2)8-x2-2x≥0.(3)x2-2ax-8a2≥0.(4)復(fù)習(xí):一元二次不等式的解法(5)(6)082???xx082???xx0812???xx022???mxmx(
2025-11-08 23:26
【摘要】簡單的分式不等式的解法簡單的分式不等式的解法解下列不等式:[思路探索]將分式不等式等價(jià)轉(zhuǎn)化為一元二次不等式或一元一次不等式組.【例1】(1)x-3x+20;(2)x+12x-3≤1;(3
2025-11-08 15:18
【摘要】絕對值不等式的解法你能一眼看出下面兩個(gè)不等式的解集嗎?⑴1x?⑵1x?探究新知例1解不等式532??x典型例題例2解不等式32?x>5典型例題例3:解不等式|5x-6|6–x典型例題鞏固練習(xí)試解
2025-11-02 05:59
【摘要】絕對值三角不等式:如:|-3|或|3|表示數(shù)-3,3所對應(yīng)的點(diǎn)A或點(diǎn)B到坐標(biāo)原點(diǎn)的距離.探究新知3?x即實(shí)數(shù)x對應(yīng)的點(diǎn)到坐標(biāo)原點(diǎn)的距離小于3.探究新知絕對值的幾何意義:同理,與原點(diǎn)距離大于3的點(diǎn)對應(yīng)的實(shí)數(shù)可表示為:3?x探究新知設(shè)a,b是
2025-08-05 10:40
【摘要】函數(shù)函數(shù)函數(shù)函數(shù)函數(shù)的奇偶性xyO12?2?1123?1?2?3f(x)=x3yxO1-11-1f(x)=x2中心對稱圖形11yxf(x)=x3O-1-1軸對稱圖形
【摘要】含絕對值的不等式教學(xué)目標(biāo)(1)掌握|x|a(a0)型的絕對值不等式的解法;(2)理解掌握絕對值的意義和利用數(shù)軸表示含絕對值的不等式的解集(1)通過用數(shù)軸來表示含絕對值不等式的解集,培養(yǎng)學(xué)生數(shù)形結(jié)合的能力;(2)通過將含絕對值的不等式同解變形為不含絕對值的不等式,培養(yǎng)學(xué)生化歸的思想和轉(zhuǎn)化的能力;(3)采用分析與綜合的方法,培養(yǎng)學(xué)生邏
2025-04-17 00:12
【摘要】含絕對值的不等式解法·典型例題能力素質(zhì)例1不等式|8-3x|>0的解集是[]ABRC{x|x}D{83}...≠.?83分析∵->,∴-≠,即≠.|83x|083x0x83答選C.例2
2025-11-02 06:54