【摘要】第三課時課題§3.2.2圓的對稱性(二)教學目標(一)教學知識點(二)1.圓的旋轉(zhuǎn)不變性.2.圓心角、弧、弦之間相等關系定理.(二)能力訓練要求1.通過觀察、比較、操作、推理、歸納等活動,發(fā)展空間觀念、推理能力以及概括問題的能力.
2024-12-05 11:52
【摘要】對稱性模型由于物質(zhì)世界存在某些對稱性,使得物理學理論也具有相應的對稱性,從而使對稱現(xiàn)象普遍存在于各種物理現(xiàn)象和物理規(guī)律中,應用這種對稱性它不僅能幫助我們認識和探索物質(zhì)世界的某些規(guī)律,而且也能幫助我們?nèi)デ蠼饽承┚唧w的物理問題,這種思維方法在物理學中為對稱法,利用對稱法分析解決物理問題,可以避免復雜的數(shù)學演算和推導,直接抓住問題的實質(zhì),出奇制勝,快捷簡便地解決問題。對稱法作為一種具體的解題
2025-08-23 21:38
【摘要】高中函數(shù)對稱性總結(jié)新課標高中數(shù)學教材上就函數(shù)的性質(zhì)著重講解了單調(diào)性、奇偶性、周期性,但在考試測驗甚至高考中不乏對函數(shù)對稱性、連續(xù)性、凹凸性的考查。尤其是對稱性,因為教材上對它有零散的介紹,例如二次函數(shù)的對稱軸,反比例函數(shù)的對稱性,三角函數(shù)的對稱性,因而考查的頻率一直比較高。以筆者的經(jīng)驗看,這方面一直是教學的難點,尤其是抽象函數(shù)的對稱性判斷。所以這里我對高中階段所涉及的函數(shù)對稱性知
2025-06-16 20:42
【摘要】第三章圓2.圓的對稱性(二)一、學生知識狀況分析學生的知識技能基礎:學生在七、八年級已經(jīng)學習過軸對稱圖形以及中心對稱圖形的有關概念及性質(zhì),以及本節(jié)定理的證明要用到三角形全等的知識等。在上節(jié)課中,學生學習了圓的軸對稱性,并利用軸對稱性研究了垂徑定理及其逆定理。學生具備一定的研究圖形的方法,基本掌握探究問題的途徑,具備合情推理的能力,
2024-12-09 08:13
【摘要】圓的對稱性預習案一、預習目標及范圍:,熟練運用垂徑定理。(難點)。(重點)。二、預習要點??三、預習檢測,⊙O的直徑CD垂直弦AB于點E,且CE=2,DE=8,則AB的長為()A.2B.4C.6
2024-12-09 02:20
【摘要】.圓的對稱性(二)初中數(shù)學九年級上冊(蘇科版)?如圖,如AB=CD則()如OABCD⌒⌒
2025-11-21 03:57
【摘要】初中數(shù)學九年級上冊(蘇科版)圓的對稱性(一)1、什么是中心對稱圖形?舉例說明把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱圖形。平行四邊形、矩形、菱形、正方形復習回憶2、圓是中心對稱圖形,圓心是它的對稱中心。1.在兩張透明紙片上,分別作半
【摘要】對稱性制作人:王云松.OAB圓繞圓心旋轉(zhuǎn)?圓繞圓心旋轉(zhuǎn)?圓繞圓心旋轉(zhuǎn)?圓繞圓心旋轉(zhuǎn)?圓繞圓心旋轉(zhuǎn)?圓繞圓心旋轉(zhuǎn)?圓繞圓心旋轉(zhuǎn)?圓繞圓心旋轉(zhuǎn)?圓繞圓心旋轉(zhuǎn)?圓繞圓心旋轉(zhuǎn)?18
2025-10-28 19:11
【摘要】在白紙上任意作一個圓和這個圓的任意一條直徑CD,然后沿著直徑所在的直線把紙折疊,你發(fā)現(xiàn)了什么?結(jié)論1:圓是軸對稱圖形,每一條直徑所在的直線都是對稱軸。強調(diào):判斷:任意一條直徑都是圓的對稱軸()X
2025-11-01 22:18
【摘要】第三章圓2.圓的對稱性(一)一、學生知識狀況分析學生的知識技能基礎:學生在七、八年級已經(jīng)學習過軸對稱圖形以及中心對稱圖形的有關概念及性質(zhì),以及本節(jié)定理的證明要用到三角形全等的知識等。學生的活動經(jīng)驗基礎:在平時的學習中,學生逐步適應應用多種手段和方法探究圖形的性質(zhì)。同時,在平時的教學中,我們都鼓勵學生獨立探索和四人小組互
【摘要】我們不做宣傳,我們只做口碑!函數(shù)的周期性與對稱性◆函數(shù)的軸對稱定理1:函數(shù)滿足,則函數(shù)的圖象關于直線對稱.推論1:函數(shù)滿足,則函數(shù)的圖象關于直線對稱.推論2:函數(shù)滿足,則函數(shù)的圖象關于直線(y軸)對稱.◆函數(shù)的周期性定理2:函數(shù)對于定義域中的任意,都有,則是以為周期的周期函數(shù);推論1
2025-03-24 12:16
【摘要】函數(shù)的對稱性一、選擇題.如果函數(shù)的圖象關于點A(1,2)對稱,那么 ( ?。〢.p=-2,n=4 B.p=2,n=-4C.p=-2,n=-4 D.p=2,n=4【答案】A.(山東省實驗中學2014屆高三上學期第二次診斷性測試數(shù)學(理)試題)函數(shù)對任意的圖象關于點對稱,則 ( ?。〢. B. C. D.0【答案】D.(山東省桓臺第二中學2014屆
2025-06-20 03:25
【摘要】第2章對稱圖形——圓圓的對稱性第2課時圓的軸對稱性與垂徑定理知識目標目標突破第2章對稱圖形——圓總結(jié)反思知識目標第2課時圓的軸對稱性與垂徑定理1.通過回顧軸對稱圖形的概念,了解圓是軸對稱圖形.2.通過探索圓的軸對稱性,掌握并應用垂徑定理求線段的長度.3.通過
2025-06-18 06:53
【摘要】一、判斷題1.過圓心平分弦(直徑除外)的直線必平分弦所對的兩條?。ǎ?.平分弧的直徑必平分弦.()3.平分弦的直線必垂直弦.()4.在圓中,如果一條直線經(jīng)過圓心,且平分弦,必平分此弦所對的?。ǎ?.分別過弦的三等分點作弦的垂線.將弦所對的兩條弧分
2024-12-05 05:43
【摘要】對稱性破缺是一個跨物理學、生物學、社會學與系統(tǒng)論等學科的概念,狹義簡單理解為對稱元素的喪失;也可理解為原來具有較高對稱性的系統(tǒng),出現(xiàn)不對稱因素,其對稱程度自發(fā)降低的現(xiàn)象。對稱破缺是事物差異性的方式,任何的對稱都一定存在對稱破缺。對稱性是普遍存在于各個尺度下的系統(tǒng)中,有對稱性的存在,就必然存在對稱性的破缺。對稱性破缺也是量子場論的重要概念,指理論的對稱
2025-01-07 15:19