【摘要】2022屆高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件25《平面向量及向量的基本運(yùn)算》1)向量的有關(guān)概念①向量:既有大小又有方向的量。向量一般用……來表示,或用有向線段的起點(diǎn)與終點(diǎn)的大寫字母表示,如:。向量的大小即向量的模(長度),記作||。②零向量:長度為0的向量,記為,其方向
2025-07-25 15:40
【摘要】一、教學(xué)目標(biāo)1.理解和掌握平面向量的分解定理;2.掌握平面內(nèi)任一向量都可以用兩個(gè)不平行向量來表示;掌握基的概念,并能夠用基表示平面內(nèi)的向量;3.根據(jù)學(xué)生已有的物理知識經(jīng)驗(yàn),在熟悉的問題情景中,體會研究向量分解的必要性。4.經(jīng)歷平面向量分解定理的探求高考資源網(wǎng)過程,培養(yǎng)觀察能力、抽象概括能力、體會化歸思想。二、教學(xué)重點(diǎn)及難點(diǎn):平面向量分解定理的發(fā)現(xiàn)和形成過程;分
2025-06-07 23:34
【摘要】 平面向量基本定理[學(xué)習(xí)目標(biāo)] ,,當(dāng)一組基底選定后,.知識點(diǎn)一 平面向量基本定理(1)定理:如果e1,e2是同一平面內(nèi)的兩個(gè)不共線向量,那么對于這一平面內(nèi)的任意向量a,有且只有一對實(shí)數(shù)λ1,λ2,使a=λ1e1+λ2e2.(2)基底:把不共線的向量e1,e2叫做表示這一平面內(nèi)所有向量的一組基底.思考 如圖所示,e1,e2是兩個(gè)不共線的向量,試用e1,e2表示向量,,,,
2025-06-19 18:18
【摘要】第一篇:平面向量基本定理及相關(guān)練習(xí)(含答案) 平面向量2預(yù)習(xí): :已知非零向量a和b,作OA=a,OB=b,則DAOB=q(0£q£p)叫做向量a和b的夾角。 (1)q=0時(shí),a和b同向;(2)...
2024-11-15 04:03
【摘要】平面向量基本定理常用題型歸納何樹衡劉建一平面向量基本定理:如果是同一平面內(nèi)的兩個(gè)不共線向量,那么對于這一平面內(nèi)的任意向量,有且僅有一對實(shí)數(shù)使得=平面向量基本定理是正交分解和坐標(biāo)表示的基礎(chǔ),它為“數(shù)”和“形”搭起了橋梁,,認(rèn)為大致分為以下題型:一、基本題型隨處可見例1:在直角坐標(biāo)平面上,已知O是原點(diǎn),,若,求實(shí)數(shù)x,y的值解: ∴ 即x為-3,y為3
2025-03-25 01:38
【摘要】正交分解問題?問題,理論上,一條直線由該直線上的一個(gè)向量確定了,那么平面呢?設(shè)、是同一平面內(nèi)的兩個(gè)不共1e2e線的向量,a是這一平面內(nèi)的任一向量,1e2e我們研究a與、之間的關(guān)系。1ea2e物理學(xué)中的力的分解模型OC=OM+ON=
2025-07-23 03:15
【摘要】第一頁,編輯于星期六:點(diǎn)三十二分。,2.3平面向量的基本定理及坐標(biāo)表示2.3.1平面向量基本定理,第二頁,編輯于星期六:點(diǎn)三十二分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁,編輯于星期六:點(diǎn)三十二分...
2024-10-22 18:48
【摘要】......1.若不給自己設(shè)限,則人生中就沒有限制你發(fā)揮的藩籬。2.若不是心寬似海,哪有人生風(fēng)平浪靜。在紛雜的塵世里,為自己留下一片純靜的心靈空間,不管是潮起潮落,也不管是陰晴圓缺,你都可以免去浮躁,義無反顧,勇往直前,輕松自如地走好人生路上
2025-07-20 14:28
【摘要】 平面向量的概念及其線性運(yùn)算1.向量的有關(guān)概念名稱定義備注平行向量方向相同或相反的非零向量0與任一向量平行或共線共線向量方向相同或相反的非零向量又叫做共線向量相等向量長度相等且方向相同的向量兩向量只有相等或不等,不能比較大小相反向量長度相等且方向相反的向量0的相反向量為0向量運(yùn)算定 義法則(或幾何意義)運(yùn)算律
【摘要】題型二:平面向量的共線問題1、若A(2,3),B(x,4),C(3,y),且=2,則x=,y=2、已知向量a、b,且=a+2b,=-5a+6b,=7a-2b,則一定共線的三點(diǎn)是()A.A、B、DB.A、B、CC.B、C、DD.A、C、D3、如果e1、e2是平面α內(nèi)兩個(gè)不共線的向量
2025-03-25 01:23
【摘要】平面向量基本定理及坐標(biāo)運(yùn)算1.選擇題1.若向量=(1,2),=(3,4),則=()A(4,6)B(-4,-6)C(-2,-2)D(2,2)2.若向量a=(x-2,3)與向量b=(1,y+2)相等,則 ()A.x=1,y=3 B.x=3,y=1 C.x=1,y=-5 D.x=5,y=-13.下列
2025-03-25 01:22
【摘要】下列命題:①若是定義在[-1,1]上的偶函數(shù),且在[-1,0]上是增函數(shù),,則②在中,A=B是sinA=sinB的充要條件.③若為非零向量,且,則.④要得到函數(shù)的圖像,只需將函數(shù)的圖像向右平移個(gè)單位.其中真命題的個(gè)數(shù)有 C.3 答案:B來源:09年陜西西安月考三題型:選擇題,難度:中檔已知向量,,.(
2025-01-14 09:48
【摘要】3.5平面的法向量課堂互動(dòng)講練知能優(yōu)化訓(xùn)練課前自主學(xué)案學(xué)習(xí)目標(biāo)學(xué)習(xí)目標(biāo),會求平面的法向量.2.能運(yùn)用平面的法向量證明平行與垂直問題.課前自主學(xué)案溫故夯基1.如果一條直線l與平面α內(nèi)的______直線都垂直,那么就稱l與平面α垂直.2.如果一條直線垂直于一個(gè)平
2024-11-12 18:19
【摘要】平面向量的概念及運(yùn)算一.【課標(biāo)要求】(1)平面向量的實(shí)際背景及基本概念通過力和力的分析等實(shí)例,了解向量的實(shí)際背景,理解平面向量和向量相等的含義,理解向量的幾何表示;(2)向量的線性運(yùn)算①通過實(shí)例,掌握向量加、減法的運(yùn)算,并理解其幾何意義;②通過實(shí)例,掌握向量數(shù)乘的運(yùn)算,并理解其幾何意義,以及兩個(gè)向量共線的含義;③了解向量的線性運(yùn)算性質(zhì)及其幾何意義(3)平面向量的基
2025-03-23 02:50
【摘要】§ 一、教材分析 1、教材的地位和作用 平面向量是高中數(shù)學(xué)學(xué)習(xí)的重點(diǎn)和難點(diǎn),空間的思想貫穿于整個(gè)高中數(shù)學(xué)之中。本節(jié)課是學(xué)生在已掌握了向量的基本運(yùn)算、向量共線基本定理的基礎(chǔ)上,進(jìn)一步由一維空間到二...
2025-04-05 06:00