【摘要】......2017年01月07日圓心角,垂徑定理 一.選擇題(共50小題)1.如圖,⊙O的直徑BD=4,∠A=60°,則BC的長度為( ?。〢. B.2 C.2 D.42.如圖,已知AB
2025-06-19 02:15
【摘要】24.弧、弦、圓心角01:基礎(chǔ)題知識點1:圓心角的概念及其計算1.下面圖形中的角是圓心角的是()ABCD2.已知⊙O的半徑為5cm,弦AB的長為5cm,則弦AB所對的圓心角∠AOB=.知識點2:弧、弦、圓心角之間的關(guān)系3.下列說法正確的是()A.相等的圓心角所對的弧相等B.在同圓中,等弧所對的圓心角相
2025-03-25 00:01
【摘要】......圓周角和圓心角的練習(xí)題一、選擇題1.圓周角是24°,則它所對的弧是________A.12°;B.24°;C.36°;D.48°.2.在⊙O中,
【摘要】3.圓周角和圓心角的關(guān)系1.圓周角的概念頂點在圓上,并且兩邊都和圓相交的角叫________.2.圓周角定理及推論圓周角定理:一條弧所對的圓周角等于它所對的圓心角的______.推論:圓周角一半相等直直徑(1)同圓或等圓中,同弧或等弧所對的圓周角______;(
2024-12-08 14:25
【摘要】北師大版九年級下冊數(shù)學(xué)圓周角:頂點在圓上,它的兩邊分別與圓還有另一個交點,像這樣的角,叫做圓周角.圓周角定理圓周角的度數(shù)等于它所對弧上的圓心角度數(shù)的一半.ABC●O●OABC●OABC●OABC情境導(dǎo)入本節(jié)目標(biāo),會熟練運用推論解決問題.2.培養(yǎng)學(xué)生觀察、分析及理解問題的能力
2025-06-12 01:19
【摘要】北師大版九年級下冊數(shù)學(xué)()①垂直弦的直徑平分這條弦②相等的圓心角所對的弧相等③圓既是軸對稱圖形,又是中心對稱圖形A.①②B.①③C.②③D.①②③?答:相等.答:頂點在圓心的角叫圓心角.?B情境導(dǎo)入本節(jié)目標(biāo)..
【摘要】(1)圓周角:頂點在圓上,角的兩邊在圓內(nèi)部分分別是圓的弦,這樣的角叫圓周角?在射門游戲中(如圖),球員射中球門的難易程度與他所處的位置B對球門AC的張角(∠ABC)有關(guān).讀一讀2●OBACBAC圓周角?當(dāng)球員在B,D,E處射門時,他所處的位置對球門AC分別形成三個張
2024-12-08 02:56
【摘要】●OBACDE特征:①角的頂點在圓上.②角的兩邊都與圓相交.1、圓周角定義:頂點在圓上,并且兩邊都和圓相交的角叫圓周角.?●OBACDE溫故知新:圓周角定理?圓周角定理一條弧所對的圓周角等于它所對的圓心角的一半.?老師提示:
2024-12-07 21:28
【摘要】圓周角和圓心角的關(guān)系(1);;、歸納等數(shù)學(xué)思想方法.在射門游戲中(如圖),球員射中球門的難易程度與他所處的位置B對球門AC的張角(∠ABC)有關(guān).如圖所示,當(dāng)球員在B,D,E處射門時,他所處的位置對球門AC分別成三個張角∠ABC,∠ADC,∠AEC這三個角的大小,有什么關(guān)系?
2025-01-18 17:37
【摘要】回顧與思考如圖1,∠AOB是角。OAB如圖2,AB=CD,則∠AOB與∠COD的大小關(guān)系是:。BAOCD圓心相等用心想一想,馬到功成在射門游戲中,球員射中球門的難易與他所處的位置B對球門AC的張角(∠
2024-11-18 19:08
【摘要】ABCDO∠AOB∠COD∠AOC∠BOD我們把頂點在圓心的角叫做圓心角.圓心角的概念·OAB探究·OABA′B′A′B′如圖,將圓心角∠AOB繞圓心O旋轉(zhuǎn)到∠A’OB’的位置,你
2024-11-27 23:25
【摘要】圓心角圓心角、圓周角?它的對稱軸是?垂徑定理的內(nèi)容是?我們是怎樣證明垂徑定理的?圓是軸對稱圖形,對稱軸是直徑所在的直線.垂徑定理是根據(jù)圓的軸對稱性進行證明的.,它會發(fā)生什么變化嗎?圓是中心對稱圖形嗎?它的對稱中心在哪里?它是不會發(fā)生變化的,我們稱之為“圓具有旋轉(zhuǎn)不變性”.圓是中心對稱圖形,它的對稱中心是圓
2024-11-18 19:29
【摘要】九年級數(shù)學(xué)(下)第三章圓3.圓周角和圓心角的關(guān)系(2)圓周角定理11、一條弧所對的圓心角等于_______,所對的圓周角等于_______。2、一弦分圓成兩部分,其中一部分是另一部分的4倍,則這弦所對的圓周角度數(shù)為________________。33、如圖,在⊙O中,∠BAC=32
2025-08-01 17:24
【摘要】課時課題:第三章圓3.圓周角和圓心角的關(guān)系第1課時課型:新授課教學(xué)目標(biāo):1.經(jīng)歷圓周角和圓心角的關(guān)系的探索、證明、應(yīng)用的過程,養(yǎng)成自主探究、合作交流的學(xué)習(xí)習(xí)慣,體會分類、歸納等數(shù)學(xué)思想方法。2.理解圓周角的概念及圓周角和圓心角的關(guān)系。并能夠應(yīng)用“圓周角與圓心角的關(guān)系”進行簡單的論證和計算.重點:經(jīng)歷探索“圓周角與圓心角的關(guān)系”的過程,理解“圓周角與圓心角
2025-06-09 23:11
【摘要】1.在同圓或等圓中,如果兩個圓心角、兩條弧、或中有一組是相等的,那么,所對應(yīng)的其余各組量都分別相等。2.在⊙O中的兩條弦AB和CD,ABCD,AB和CD的弦心距分別為OM和ON,則OM__________ON。3.已知:如圖,AB=AC,D為弧AB的中點,G為弧AC中點,求證:DE=FG。4.AB、CD是⊙O內(nèi)兩條弦,且