【摘要】在直角三角形中,除直角外,還有哪些元素?這5個元素之間有什么關(guān)系?知道其中哪些元素,可以求出其余的元素?cbaCBA如圖,在Rt△ABC中,∠C為直角,其余5個元素之間有以下關(guān)系:(2)銳角之間的關(guān)系:∠A+∠B=90
2024-10-19 09:27
【摘要】透析中考本節(jié)內(nèi)容在中考中常以選擇題、填空題以及解答題的形式出現(xiàn)。在歷年的中考中,銳角三角函數(shù)的概念以及特殊銳角的三角函數(shù)值一直是考試的重點,利用直角三角形的知識來解決實際問題是歷年中考的熱點問題。今后將會更加側(cè)重于利用直角三角形的知識解決與生活、生產(chǎn)密切相關(guān)的實際應用題,主要涉及到測量問題、航海問題等的考查。重在考查運用數(shù)學知識解決實際問題的能
2024-11-21 04:03
【摘要】解直角三角形的說課稿 各位領導老師同學們,大家下午好! 我說課的的題目是解直角三角形,它是第二十五章第三節(jié)內(nèi)容,我從下面五個方面說課。 第一方面:教材分析 1、本節(jié)的地位作用 《解直角三角形...
2024-12-04 22:53
【摘要】精品資源《解直角三角形》基礎測試一填空題(每小題6分,共18分):1.在Rt△ABC中,∠C=90°,a=2,b=3,則cosA= ,sinB= ,tanB= ,cotB= ??;2.直角三角形ABC的面積為24cm2,直角邊AB為6cm,∠A是銳角,則sinA= ;3.等腰三角形底邊長10cm,周長為36cm,則一底角的余切值為 .
2025-03-25 07:47
【摘要】【探究目標】1.目的與要求能綜合運用直角三角形的勾股定理與邊角關(guān)系解決簡單的實際問題.2.知識與技能能根據(jù)直角三角形中的角角關(guān)系、邊邊關(guān)系、邊角關(guān)系解直角三角形,能運用解直角三角形的知識解決有關(guān)的實際問題.3.情感、態(tài)度與價值觀通過解直角三角形的應用,培養(yǎng)學生學數(shù)學、用數(shù)學的意識和能力,激勵學生多接觸社會、了解生活并熟悉一些生產(chǎn)和生活中的實際事物.【探究指
2025-06-07 19:21
【摘要】“啟發(fā)”輔導中心專用資料九(下)數(shù)學輔導---------解直角三角形21、計算:(1)(2)(3)cos30°+sin45°(4)6tan230°-sin60°-2sin45°
2025-08-17 07:43
【摘要】初中數(shù)學資源網(wǎng)初中數(shù)學資源網(wǎng)你學到了什么?.想一想P291駛向勝利的彼岸????你能想出幾種方法??,用計算器探索這個角的正弦,余弦,正切之間的關(guān)系.初中數(shù)學資源網(wǎng)回味無窮?由銳角的三角函數(shù)值反求銳角小結(jié)拓展?填表:已知一個角的三角函數(shù)值
2024-11-10 12:43
【摘要】直角三角形用Rt△表示,如圖記作Rt△ABCACB直角邊斜邊直角邊直角三角形的兩個銳角互余。反過來,有兩個角互余的三角形是直角三角形例1如圖,CD是Rt△ABC斜邊上的高。(1)請找出圖中各對互余的角。ACBD12(2)請找出圖中各對相等的角。
2025-08-16 00:31
【摘要】(2010哈爾濱)在Rt△ABC中,∠C=90°,∠B=35°,AB=7,則BC的長為().C(A)7sin35°(B)(C)7cos35°(D)7tan35°(2010紅河自治州)計算:+2sin60°=(2010紅河自治州)(本小題滿分9分)如圖5,一架飛機
2025-08-04 12:59
2025-08-05 19:13
【摘要】第25章?解直角三角形復習第25章?解直角三角形復習二.重點、難點:?1.重點:???(1)探索直角三角形中銳角三角函數(shù)值與三邊之間的關(guān)系.掌握三角函數(shù)定義式:sinA=,cosA=,tanA=,cotA=.???(2)掌握30°、45°、60&
2025-06-07 22:10
【摘要】直角三角形中成比例線段一、復習、探索基本圖形中線段的重要性質(zhì)已知:如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于D。ABCD(1)圖中有------條線段,其中AD是-------在斜邊AB上的射影,BD是-------在斜邊
2024-11-09 05:44
【摘要】直角三角形、斜邊中線、等腰直角三角形專題一、直角三角形的性質(zhì)1.一塊直角三角板放在兩平行直線上,如圖,∠1+∠2= 度.2.如圖,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分線BE交AD于點F,AG平分∠DAC,求證:①∠BAD=∠C;②∠AEF=∠AFE;③AG⊥EF.3.如圖所示,在△ABC中,CD,BE是兩條高,那么圖中與∠A相等的角有
2025-03-25 06:30
2024-11-10 12:42
【摘要】瓜瀝一中龍志祥ABCDEABCDEA`B`D`EABCDAEA`BCD影子法平面鏡法標桿法例:他先在點C處用測角儀測得塔頂A的仰角是300,再向塔前進540米到達D,在
2024-11-10 12:36