【摘要】年級(jí)高一學(xué)科數(shù)學(xué)內(nèi)容標(biāo)題簡單的三角函數(shù)恒等變換編稿老師褚哲一、學(xué)習(xí)目標(biāo):1.了解積化和差、和差化積的推導(dǎo)過程,能初步運(yùn)用公式進(jìn)行和、積互化.2.能應(yīng)用公式進(jìn)行三角函數(shù)的求值、化簡、證明.二、重點(diǎn)、難點(diǎn):重點(diǎn):三角函數(shù)的積化和差與和差化積公式,能正確運(yùn)用此公式進(jìn)行簡單的三角函數(shù)式的化簡、求值和恒等式的證明.難點(diǎn):公式的靈活應(yīng)
2025-06-26 09:28
【摘要】《三角恒等變換練習(xí)題》一、選擇題(本大題共6小題,每小題5分,滿分30分)1.已知,,則()A.B.C.D.2.函數(shù)的最小正周期是()A.B.C.D.3.在△ABC中,,則△ABC為()A.銳角三角形B.直角三角形C.鈍角三角形D.
2025-06-24 20:23
【摘要】三角恒等變換課題三角恒等變換教學(xué)目標(biāo)1、掌握和差角公式、二倍角公式的推導(dǎo)方法與記憶技巧,并能熟練運(yùn)用此類公式。2、能夠熟練進(jìn)行三角恒等變換(如:化簡、求值)重點(diǎn)、難點(diǎn)重點(diǎn):三角恒等變換;難點(diǎn):三角恒等變換的應(yīng)用考點(diǎn)及考試要求1、兩角和與差的正弦、余弦、正切公式。2、二倍角的正弦、余弦、正切公式3、運(yùn)用相關(guān)公式進(jìn)行簡單的三角恒等變換
2025-04-16 12:50
【摘要】本卷第1頁(共5頁)2020高考數(shù)學(xué)總復(fù)習(xí)三角恒等變換練習(xí)題一、選擇題1.已知(,0)2x???,4cos5x?,則?x2tan()A.247B.247?C.724D.724?2.函數(shù)3sin4cos5yxx??
2025-08-20 20:21
【摘要】 兩角和與差的正弦、余弦和正切基礎(chǔ)梳理1.兩角和與差的正弦、余弦、正切公式(1)C(α-β):cos(α-β)=cos_αcos_β+sin_αsin_β;(2)C(α+β):cos(α+β)=cos_αcos_β-sin_αsin_β;(3)S(α+β):sin(α+β)=sin_αcos_β+cos_αsin_β;(4)S(α-β):sin(α-β)=sin_
2025-06-23 18:30
【摘要】范文范例參考三角恒等變換專題復(fù)習(xí)教學(xué)目標(biāo):1、能利用單位圓中的三角函數(shù)線推導(dǎo)出的正弦、余弦、正切的誘導(dǎo)公式;2、理解同角三角函數(shù)的基本關(guān)系式:;3、可熟練運(yùn)用三角函數(shù)見的基本關(guān)系式解決各種問題。教學(xué)重難點(diǎn):可熟練運(yùn)用三角函數(shù)見的基本關(guān)系式解決各種問題【基礎(chǔ)知識(shí)】一、同角的三大關(guān)系:①倒數(shù)關(guān)系tan?cot=1
【摘要】簡單的三角恒等變換一、填空題1.若π<α<π,sin2α=-,求tan________________2.已知sinθ=-,3π<θ<,則tan的值為___________.4.已知α為鈍角、β為銳角且sinα=,sinβ=,則cos的值為____________.5.設(shè)5π<θ<6π,cos=a,則sin的值等于________________
2025-03-25 06:58
【摘要】高中數(shù)學(xué)必修4三角恒等變換復(fù)習(xí)專題第二部分:三角恒等變換1、兩角和與差的正弦、余弦和正切公式:⑴;⑵;⑶;⑷;⑸
2025-04-17 12:49
【摘要】新人教A版數(shù)學(xué)必修4第三章三角恒等變換復(fù)習(xí)引入三角函數(shù)三角函數(shù)值sin30?sin45?sin60?三角函數(shù)三角函數(shù)值cos30?cos45?cos60?122232322212cos15???成果展示
2025-07-19 18:12
【摘要】2011年——2016年高考題專題匯編專題4三角函數(shù)、三角恒等變換三角恒等變換1、(16年全國3文)若,則cos2θ=(A)(B)(C)(D)2、(16年全國3理)若,則(A)(B)(C)1(D)3、(16年全國2文)函數(shù)的最大值為(A)4(B)5 (C)6 (D)
2025-04-08 12:18
【摘要】三角函數(shù)與三角恒等變換(A)一、填空題(本大題共14小題,每題5分,,請把答案寫在指定位置上)1.半徑是r,圓心角是α(弧度)的扇形的面積為________.2.若,則tan(π+α)=________.3.若α是第四象限的角,則π-α是第________象限的角.4.適合的實(shí)數(shù)m的取值范圍是_________.5.若tanα=3,則cos2α+3sin2α=
2025-06-22 22:13
【摘要】2021-1-23高中數(shù)學(xué)蘇教版必修4三角函數(shù)知識(shí)點(diǎn)總結(jié)一、角的概念和弧度制:(1)在直角坐標(biāo)系內(nèi)討論角:角的頂點(diǎn)在原點(diǎn),始邊在x軸的正半軸上,角的終邊在第幾象限,就說過角是第幾象限的角。若角的終邊在坐標(biāo)軸上,就說這個(gè)角不屬于任何象限,它叫象限界角。(2)①與?角終邊相同的角的集合:},2|{},360|{0ZkkZkk?????
2025-12-09 04:37
【摘要】范文范例參考20170924階測卷:三角恒等變換基礎(chǔ)題型姓名:________________分?jǐn)?shù):________________一.選擇題(共20小題,每小題5分)時(shí)間60分鐘4.已知sin2α=,則cos2()=( ?。〢.﹣ B. C.﹣ D.5.若,則cos(π﹣2α)=( ?。〢. B. C. D.6.已知sin(α+)+si
【摘要】《三角恒等變換練習(xí)題》(培優(yōu)訓(xùn)練9)一、選擇題1.已知,,則()Α.B.C.D.2.函數(shù)的最小正周期是()Α.B.C.D.3.在△ΑBC中,,則△ABC為()Α.銳角三角形B.直角三角形C.鈍角三角形D.無法判定
2025-03-24 05:44