【摘要】考點(diǎn)一勾股定理及其逆定理(5年5考)例1(2022·濱州中考)在直角三角形中,若勾為3,股為4,則弦為()A.5B.6C.7D.8【分析】直接根據(jù)勾股定理求解即可.【自主解答】根據(jù)勾股定理直接求得弦長(zhǎng)為=5.故選A.應(yīng)
2025-06-15 16:36
2025-06-15 16:38
【摘要】第四章三角形相似三角形考點(diǎn)1比例線段陜西考點(diǎn)解讀中考說(shuō)明:、線段的比、成比例的線段。:兩條直線被一組平行線所截,所得的對(duì)應(yīng)線段成比例。(1)(2)(3)(0,0);acadbcbdbd?????2(0,0);abbacbcbc?????(0)ac
2025-06-12 12:00
【摘要】第四章三角形第16講全等三角形01課后作業(yè)02能力提升目錄導(dǎo)航課后作業(yè)1.(2018黔南州)如圖,a,b,c為三角形的邊長(zhǎng),則甲、乙、丙三個(gè)三角形和左側(cè)△ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D
2025-06-12 02:21
【摘要】第四節(jié)等腰三角形考點(diǎn)一等腰三角形的性質(zhì)與判定例1(2022·四川雅安中考)已知:如圖,在△ABC中,AB=AC,∠C=72°,BC=,以點(diǎn)B為圓心,BC為半徑畫(huà)弧,交AC于點(diǎn)D,則線段AD的長(zhǎng)為()5【分析】根據(jù)等腰三角形的性質(zhì)和三角形外角的性質(zhì),得出AD=
2025-06-15 20:43
【摘要】第四章圖形的認(rèn)識(shí)19三角形與全等三角形目標(biāo)方向理解三角形及其內(nèi)角、外角、中線、高線、角平分線的概念;掌握三角形的三邊關(guān)系,三角形的內(nèi)角和定理及其推論;熟練掌握三角形全等的性質(zhì)與判定和三角形全等的證明,理解三角形全等不僅是解決幾何問(wèn)題的重要工具,而且是中考的核心內(nèi)容.探索并理解三角形與相交線、平行線和其他多邊形之間的內(nèi)在聯(lián)系,在復(fù)習(xí)中逐步
2024-11-30 15:07
【摘要】考點(diǎn)一三角形的三邊關(guān)系(5年0考)例1三角形兩邊長(zhǎng)分別為3和6,第三邊的長(zhǎng)是方程x2-13x+36=0的兩根,則該三角形的周長(zhǎng)為()A.13B.15C.18D.13或18A【分析】先求出方程x2-13x+36=0的兩根,再根據(jù)三角形的三邊關(guān)系得到符合題意的邊
2025-06-21 06:05
2025-06-12 13:23
2025-06-17 20:20
【摘要】第七節(jié)相似三角形考點(diǎn)一比例的有關(guān)概念與性質(zhì)(5年1考)例1(2022·嘉興中考)如圖,直線l1∥l2∥l3,直線AC交l1,l2,l3于點(diǎn)A,B,C;直線DF交l1,l2,l3于點(diǎn)D,E,F(xiàn),已知=,則=.ABAC13EFDE【
2025-06-13 03:43
【摘要】第四章三角形三角形及其性質(zhì)考點(diǎn)1三角形的分類(lèi)陜西考點(diǎn)解讀三角形按邊的關(guān)系分類(lèi)如下:三角形按邊的關(guān)系分類(lèi)如下:陜西考點(diǎn)解讀等腰三角形中至少有兩邊相等,而等邊三角形的三邊都相等,所以等邊三角形是特殊的等腰三角形?!咎貏e提示】【提分必練】1∶2∶3,則這個(gè)三角形一定是(
2025-06-18 00:31
【摘要】第四節(jié)等腰三角形考點(diǎn)一等腰三角形的性質(zhì)與判定(5年3考)例1(2022·桂林中考)如圖,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,則圖中等腰三角形的個(gè)數(shù)是.【分析】首先根據(jù)已知條件分別計(jì)算圖中每一個(gè)三角形每個(gè)角的度數(shù),然后根據(jù)等角對(duì)等邊解答,做題時(shí)要注意,從
2025-06-19 15:17
【摘要】第二節(jié)三角形的基礎(chǔ)考點(diǎn)一三角形的三邊關(guān)系例1(2022·福建中考)下列各組數(shù)中,能作為一個(gè)三角形三邊邊長(zhǎng)的是()A.1,1,2B.1,2,4C.2,3,4D.2,3,5【分析】根據(jù)三角形中任意兩邊之和大于第三邊,任意兩邊之差小于第三邊,即可求解.【自主解答】
2025-06-17 20:27
【摘要】考點(diǎn)一銳角三角函數(shù)(5年1考)例1(2022·德州中考)如圖,在4×4的正方形方格圖形中,小正方形的頂點(diǎn)稱(chēng)為格點(diǎn),△ABC的頂點(diǎn)都在格點(diǎn)上,則∠BAC的正弦值是.【分析】先根據(jù)勾股定理的逆定理判斷出△ABC的形狀,再由銳角三角函數(shù)的定義即可得出結(jié)論.【自主解答】由勾股
2025-06-21 06:11