【正文】
種牌號的煤炭和重質石油瀝青等。從孔結構和形態(tài)的控制角度考慮多是從合成樹脂、合成纖維出發(fā),如吸脫附速度快的活性炭纖維,較多中孔結構的醫(yī)用碳吸附劑,有特殊透過性能的多孔炭膜以及燃料電池用的多孔炭板等。 介孔材料的制備方法有序介孔材料是一類新型的納米材料,其特點是孔徑分布范圍窄并排列有序,具有高比表面積、孔容積大以及較高的熱穩(wěn)定性和水熱穩(wěn)定性,在作為精細化學品催化劑和生物大分子吸附分離等方面以及光、電、磁等功能材料領域具有廣泛的應用。模板技術在分子篩合成研究中一直占有非常重要的地位。介孔分子篩的特點可歸納為:以表面活性劑分子聚集體為模板,通過表面活性劑分子聚集體和無機物種之間的界面組裝過程實現(xiàn)對介觀圖式結構的剪裁。的小角范圍內,對應的類晶體結構介于納米尺度,較普通晶體大得多。另外,模板技術源于生物礦化過程,隨著人們對組裝過程認識的不斷深入,人們必然加深對生物礦化過程乃至生命過程的理解,最終指導有意識的合成人們所需要的仿生材料。碳前驅體的填充路徑有兩種:液相浸漬和化學氣相沉積。液相浸漬法存在一突出的缺點即工藝復雜,它通過液態(tài)分子擴散來實現(xiàn)孔內填充,為達到孔內分子的緊密堆積,須反復進行浸漬—干燥處理,顯然需要的時間長,而且很難保證填充效率及重復性。 有序介孔炭的發(fā)展前景及研究意義有序介孔材料是一類新型的納米結構材料[3839],其特點是孔道大小均勻、排列有序、孔徑可以在2~10nm范圍內連續(xù)調節(jié),從而將分子篩的規(guī)則孔徑從微孔拓展到介孔領域,同時具有高的比表面積和墻厚,以及較高的熱穩(wěn)定性和水熱穩(wěn)定性,載吸附、分離、催化等方面以及光、電、磁等領域[40]具有廣闊的應用前景。參考文獻[1] 徐如人,:科學出版社,2004[2] 李惠云,何其戈,1999,(2):27229[3] 曾垂省,陳曉明,2004,12(5):4852[4] Kresge C T, Leonowicz M E. Facile Preparation of Hierarchically Porous Carbon Monoliths with WellOrdered Mesostructures. Nature, 1992, 359: 710712[5] Stucky G D, Monnier A, Schueth F, et al. SurfactantTemplated Mesoporous Materials: From Inorganic to Hybrid to Organic. Mol. Cryst. Liq. Cryst., 1994, 240: 187193[6] Huo Q, Leon R, Petroff P, et al. Synthesis of Highly Ordered, Extremely Hydrothermal stable SBA15/AlSBA15 under the Assistance of Sodium Chloride. Science, 1995, 268: 13241325[7] Huo Q, Stucky G D. Mesoporous Materials (M41S): From Discovery to Application. Chem. Mater., 1996, 8: 11471152[8] Tanev P T, Pinnavaia T J. TemperatureProgrammed MicrowaveAssisted Synthesis of SBA15 Ordered Mesoporous Silica. Nature, 1994, 368: 321323[9] Huo Q S, Margolese D I. Ultraslow Temperature Synthesis of Ordered Hexagonal Smaller Supermicroporous Silica Using Semifluorinated Surfactants as Template. Nature, 1994, 378: 317321[10] Tanev P T, Pinnavaia T J. Recent Progress in the Synthesis of Porous Carbon Material. Science, 1995, 267: 865867[11] Bagshaw S A, Prouzet E, Pinnavaia T J. Energetically Favored Formation of MCM48 from CationicNeutral Surfactant Mixtures. Science, 1995, 269 (5228): 12421244[12] Kim S S, Zhang W, Pinnavaia T J. Hydrothermal stability of MCM48 Improved by postsynthesis restructuring in salt solution. Science, 1998, 282: 10321035[13] Zhang W Z, Glomski B, Pauly T R, Pinnavaia T J. Investigation of the Morphology of the Mesoporous SBA15 and SBA16 Materials. Chem. Commun., 1999: 18031805[14] Kim S, Liu Y, Pinnavaia T J. Micropor. Facile synthesis of high quality mesoporous SBA15 with enhanced control of the porous network connectivity and wall thickness Mesopor. Mater, 2001, 4445: 489498[15] Mercier L, Pinnavaia T J. Fabrication of wellordered macroporous active carbon with a microporous framework. Chem. Mater. 2000, 12 (1): 188190[16] Zhao D, Feng J, Huo Q. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. Science, 1998, 279: 5