【摘要】12022線性代數(shù)期末試題及參考答案一、判斷題(正確填T,錯(cuò)誤填F。每小題2分,共10分)1.A是n階方陣,R??,則有AA???。()2.A,B是同階方陣,且0?AB,則111)(????ABAB。()3.如
2025-01-06 17:51
【摘要】1、行列式1.行列式共有個(gè)元素,展開后有項(xiàng),可分解為行列式;2.代數(shù)余子式的性質(zhì):①、和的大小無(wú)關(guān);②、某行(列)的元素乘以其它行(列)元素的代數(shù)余子式為0;③、某行(列)的元素乘以該行(列)元素的代數(shù)余子式為;3.代數(shù)余子式和余子式的關(guān)系:4.設(shè)行列式:將上、下翻轉(zhuǎn)或左右翻轉(zhuǎn),所得行列式為,則;將順時(shí)針或逆時(shí)針旋轉(zhuǎn),所得行列式為,則;將主對(duì)角線翻
2025-07-24 13:45
【摘要】第一章行列式1.利用對(duì)角線法則計(jì)算下列三階行列式:(1);解=2′(-4)′3+0′(-1)′(-1)+1′1′8-0′1′3-2′(-1)′8-1′(-4)′(-1)
2025-06-28 21:04
【摘要】1線性代數(shù)第1講下載網(wǎng)址:.2第一章行列式§二階,三階行列式3(一)二階行列式1112112212212122aaaaaaaa??a11a12a21a22?+4例1.5152(1)31332?
2024-10-19 01:17
2025-01-09 10:36
【摘要】第一篇:線性代數(shù)實(shí)驗(yàn)心得 線性代數(shù)實(shí)驗(yàn)心得 線代課本的前言上就說(shuō):“在現(xiàn)代社會(huì),除了算術(shù)以外,線性代數(shù)是應(yīng)用最廣泛的數(shù)學(xué)學(xué)科了?!蔽覀兊木€代教學(xué)的一個(gè)很大的問(wèn)題就是對(duì)線性代數(shù)的應(yīng)用涉及太少,課本上...
2024-10-15 12:33
【摘要】第一篇:線性代數(shù)C答案 線性代數(shù)模擬題 一.=m,依下列次序?qū)ij進(jìn)行變換后,其結(jié)果是(A).交換第一行與第五行,再轉(zhuǎn)置,用2乘所有的元素,再用-3乘以第二列加于第三列,最后用4除第二行各元素....
2024-11-09 22:39
【摘要】第一章質(zhì)點(diǎn)運(yùn)動(dòng)學(xué)第一章教學(xué)基本要求第一章質(zhì)點(diǎn)運(yùn)動(dòng)學(xué)屈沏臭澇肥滋進(jìn)測(cè)誕芍廠是擠酉戍控昆秸腑教企勉勿秤脆磕菏蒲集框昨庸1-0第一章教學(xué)基本要求1-0第一章教學(xué)基本
2025-01-18 20:32
【摘要】2021/11/101線性代數(shù)第14講二次型2021/11/102二次型就是二次多項(xiàng)式.在解析幾何中討論的有心二次曲線,當(dāng)中心與坐標(biāo)原點(diǎn)重合時(shí),其一般方程是ax2+2bxy+cy2=f(1)方程的左端就是x,y的一個(gè)二次齊次多項(xiàng)式.為了便于研究這個(gè)二次曲線的幾何性質(zhì),通過(guò)基變換(坐標(biāo)變換)
2024-10-19 01:08
【摘要】第二講行列式的性質(zhì)性質(zhì)1性質(zhì)2性質(zhì)4
2024-10-18 19:01
【摘要】第五章相似矩陣及二次型§1向量的內(nèi)積、長(zhǎng)度及正交性定義:設(shè)有n維向量令則稱[x,y]為向量x和y的內(nèi)積.1122[,]nnxyxyxyxy????向量的內(nèi)積1122,,nnxyxyxyxy????
2024-12-08 01:18
【摘要】上頁(yè)下頁(yè)鈴結(jié)束返回首頁(yè)1線性代數(shù)上頁(yè)下頁(yè)鈴結(jié)束返回首頁(yè)2線性代數(shù)緒論上頁(yè)下頁(yè)鈴結(jié)束返回首頁(yè)3問(wèn)題:1、什么是線性代數(shù)?2、為什么要學(xué)線性代數(shù)?3、怎么做才能學(xué)好線性代數(shù)?上頁(yè)下頁(yè)鈴結(jié)束返回首頁(yè)4一、什么是線性代數(shù)?(
2025-01-14 18:09
【摘要】線性代數(shù)公式1、行列式1.行列式共有個(gè)元素,展開后有項(xiàng),可分解為行列式;2.代數(shù)余子式的性質(zhì):①、和的大小無(wú)關(guān);②、某行(列)的元素乘以其它行(列)元素的代數(shù)余子式為0;③、某行(列)的元素乘以該行(列)元素的代數(shù)余子式為;3.代數(shù)余子式和余子式的關(guān)系:4.設(shè)行列式:將上、下翻轉(zhuǎn)或左右翻轉(zhuǎn),所得行列式為,則;將順時(shí)針或逆時(shí)針旋轉(zhuǎn),所得行列式
【摘要】數(shù)量矩陣是對(duì)角矩陣的一種!A-B相似,不管是不是實(shí)對(duì)稱矩陣一定是特征值一樣的?。ǚ粗??沒(méi)有實(shí)對(duì)稱這個(gè)前提對(duì)嗎?對(duì)比書上195頁(yè)例14)實(shí)對(duì)稱的更是的!而正負(fù)慣性指數(shù)前提是二次型函數(shù)的,所以一定要實(shí)對(duì)稱矩陣的!標(biāo)準(zhǔn)型不定,可以有很多種,但是不管化成哪種,慣性指數(shù)是一定的,一樣的!因此判斷兩個(gè)二次型能否相互化成關(guān)鍵是看慣性指數(shù)是否一樣!這個(gè)定理為什么成立?而慣性指數(shù)等同(相等)于一
2025-03-23 12:03
【摘要】第一章行列式1.為何要學(xué)習(xí)《線性代數(shù)》?學(xué)習(xí)《線性代數(shù)》的重要性和意義。答:《線性代數(shù)》是理、工、醫(yī)各專業(yè)的基礎(chǔ)課程,它是初等代數(shù)理論的繼續(xù)和發(fā)展,它的理論和方法在各個(gè)學(xué)科中得到了廣泛的應(yīng)用。2.《線性代數(shù)》的前導(dǎo)課程。答:初等代數(shù)。3.《線性代數(shù)》的后繼課程。答:高等代數(shù),線性規(guī)劃,運(yùn)籌學(xué),經(jīng)濟(jì)學(xué)等。4.如何學(xué)習(xí)《線性代數(shù)》?答:掌握各章節(jié)的基