freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

幾何畫(huà)板在小學(xué)數(shù)學(xué)教學(xué)中的應(yīng)用(優(yōu)秀范文五篇)(文件)

 

【正文】 更加符合學(xué)生認(rèn)知規(guī)律的方案,為學(xué)生的學(xué)習(xí)更好地服務(wù)!充分利用媒體來(lái)優(yōu)化數(shù)學(xué)課堂教學(xué),改變一堂課的設(shè)計(jì)理念。同樣,一個(gè)學(xué)生如果根本不具備數(shù)學(xué)想象力,要把數(shù)學(xué)學(xué)好那也是不可能的。那么,《幾何畫(huà)板》在高中數(shù)學(xué)教學(xué)中有哪些應(yīng)用呢?作為一名高中數(shù)學(xué)教師筆者就此談幾點(diǎn)體會(huì):一、《幾何畫(huà)板》在高中代數(shù)教學(xué)中的應(yīng)用函數(shù)”是中學(xué)數(shù)學(xué)中最基本、最重要的概念,它的概念和思維方法滲透在高中數(shù)學(xué)的各個(gè)部分;同時(shí),函數(shù)是以運(yùn)動(dòng)變化的觀點(diǎn)對(duì)現(xiàn)實(shí)世界數(shù)量關(guān)系的一種刻劃,這又決定了它是對(duì)學(xué)生進(jìn)行素質(zhì)教育的重要材料。具體說(shuō)來(lái),可以用《幾何畫(huà)板》根據(jù)函數(shù)的解析式快速作出函數(shù)的圖象,并且可以在同一個(gè)坐標(biāo)系中作出多個(gè)函數(shù)的圖象,如在同一個(gè)直角坐標(biāo)系中作出函數(shù)y=2x和y=(12)的圖象,比較圖象的形狀和位置,歸納指數(shù)函數(shù)的性質(zhì);還可以作出含有若干參數(shù)的函數(shù)圖象,當(dāng)參數(shù)變化時(shí)函數(shù)圖象也相應(yīng)地變化,如在講函數(shù)y=Asin(ωx+φ)的圖象時(shí),傳統(tǒng)教學(xué)只能將A、ω、φ代入有限個(gè)值,觀察各種情況時(shí)的函數(shù)圖象之間的關(guān)系;利用《幾何畫(huà)板》則可以以線段b、T的長(zhǎng)度和A點(diǎn)到x軸的距離為參數(shù)作圖(如圖1),當(dāng)拖動(dòng)兩條線段的某一端點(diǎn)(即改變兩條線段的長(zhǎng)度)時(shí)分別改變?nèi)呛瘮?shù)的首相和周期,拖動(dòng)點(diǎn)A則改變其振幅,這樣在教學(xué)時(shí)既快速靈活,又不失一般性。從平面圖形到空間圖形,從平面觀念過(guò)渡到立體觀念,無(wú)疑是認(rèn)識(shí)上的一次飛躍。而應(yīng)用《幾何畫(huà)板》將圖形動(dòng)起來(lái),就可以使圖形中各元素之間的位置關(guān)系和度量關(guān)系惟妙惟肖,使學(xué)生x 2 從各個(gè)不同的角度去觀察圖形。三、《幾何畫(huà)板》在平面解析幾何教學(xué)中的應(yīng)用平面解析幾何是用代數(shù)方法來(lái)研究幾何問(wèn)題的一門(mén)數(shù)學(xué)學(xué)科,它研究的主要問(wèn)題,即它的基本思想和基本方法是:根據(jù)已知條件,選擇適當(dāng)?shù)淖鴺?biāo)系,借助形和數(shù)的對(duì)應(yīng)關(guān)系,求出表示平面曲線的方程,把形的問(wèn)題轉(zhuǎn)化為數(shù)來(lái)研究;再通過(guò)方程,研究平面曲線的性質(zhì),把數(shù)的研究轉(zhuǎn)化為形來(lái)討論。具體地說(shuō),比如在講平行直線系y=x+b或中心直線系y=kx+2時(shí),如圖6所示,分別拖動(dòng)圖(1)中的點(diǎn)A和圖(2)中的點(diǎn)B時(shí),可以相應(yīng)的看到一組斜率為1的平行直線和過(guò)定點(diǎn)(0,2)的一組直線(不包括y軸)。這樣,既能激發(fā)學(xué)生的情感、培養(yǎng)學(xué)生的興趣,又能大大提高課堂效率。它能極大的激發(fā)學(xué)生的學(xué)習(xí)興趣,活躍課堂氣氛;便于多方位地提高學(xué)習(xí)效果;在數(shù)學(xué)教學(xué)中能克服許多常規(guī)教學(xué)中無(wú)法解決的困難;便于增加課堂的容量,提高課堂效率。下面結(jié)合我在數(shù)學(xué)教學(xué)中的一些實(shí)踐,就數(shù)學(xué)軟件中的幾何畫(huà)板在初中數(shù)學(xué)教學(xué)實(shí)踐中的幾個(gè)方面的應(yīng)用談?wù)勎业囊恍w會(huì)和看法。例如,我們?cè)谥v述二次函數(shù)的應(yīng)用時(shí),就涉及到利用二次函數(shù)的圖象解一元二次方程的解,從而實(shí)現(xiàn)函數(shù)與方程這兩種數(shù)學(xué)模式之間的互相轉(zhuǎn)換。教學(xué)實(shí)踐表明:利用幾何畫(huà)板畫(huà)二次函數(shù)圖象求一元二次方程的解,真正意義上實(shí)現(xiàn)了函數(shù)和方程兩種模式之間的轉(zhuǎn)換,傳統(tǒng)教學(xué)是不能做到這一點(diǎn)的。作為教師、如何通過(guò)自己的教學(xué)設(shè)計(jì),再現(xiàn)這一過(guò)程,引導(dǎo)學(xué)生參與知識(shí)的探討與發(fā)現(xiàn)活動(dòng),培養(yǎng)學(xué)生正確、科學(xué)的思維方式,運(yùn)用基本的數(shù)學(xué)思想方法研究問(wèn)題。通過(guò)以上演示觀察,啟發(fā)學(xué)生得出猜想:同弧所對(duì)的圓周角相等。在數(shù)學(xué)幾何教學(xué)中,運(yùn)用幾何畫(huà)板輔助教學(xué),可以為學(xué)生創(chuàng)設(shè)豐富多彩的教學(xué)情境,增設(shè)疑問(wèn),巧設(shè)懸念,引發(fā)學(xué)生的好奇心,激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣??傊瑤缀萎?huà)板能準(zhǔn)確、動(dòng)態(tài)地表達(dá)數(shù)學(xué)問(wèn)題,它所提供的多種方法可以幫助教師進(jìn)行形象直觀地教學(xué),也可以讓學(xué)生在教師做好的圖形上能直觀形象且動(dòng)態(tài)地進(jìn)行數(shù)學(xué)探討,能極大地增強(qiáng)學(xué)生的學(xué)習(xí)興趣。尤其在數(shù)學(xué)課堂教學(xué)中,激發(fā)學(xué)生的學(xué)習(xí)興趣,使他們由厭學(xué)、苦學(xué)變?yōu)橄矊W(xué)、樂(lè)學(xué),更為重要。同時(shí)可看到,不論C 運(yùn)動(dòng)到什么位置,始終構(gòu)成AB所對(duì)的一個(gè)圓周角。二、揭示幾何規(guī)律作為教材的課本一般都是直截了當(dāng)?shù)慕o出了發(fā)現(xiàn)的結(jié)果。在其探究活動(dòng)中,本人采用如下教學(xué)設(shè)計(jì)進(jìn)行探究:?jiǎn)栴}1:x2+x1=0的解可以看做拋物線y=x2+x1和直線y=0交點(diǎn)的橫坐標(biāo),如果方程變形成x2=x+1,那么方程的解也可以看成怎樣的兩個(gè)函數(shù)的交點(diǎn)的橫坐標(biāo)?教師演示:利用幾何畫(huà)板快速作出二次函數(shù)y=x2和一次函數(shù)y=x+1的圖象,找出它們的兩個(gè)交點(diǎn)A、B,再利用菜單欄中的度量工具,計(jì)算出兩點(diǎn)的橫坐標(biāo),讓學(xué)生深深感受到幾何畫(huà)板的方便、快捷?!焙瘮?shù)的兩種表達(dá)方式解析式和圖象之間常常需要對(duì)照。關(guān)鍵字:幾何畫(huà)板 數(shù)形結(jié)合 數(shù)學(xué)思想方法 數(shù)學(xué)規(guī)律 興趣面向新標(biāo)準(zhǔn)新教材的課件設(shè)計(jì)與制作首當(dāng)其沖是課件設(shè)計(jì)理念的轉(zhuǎn)變,幾何畫(huà)板具有很強(qiáng)大的動(dòng)態(tài)教學(xué)演示功能,是我們數(shù)學(xué)教師制作課件的首選工具,它不僅是一個(gè)教學(xué)工具,更是一個(gè)學(xué)生用來(lái)學(xué)習(xí)數(shù)學(xué)(特別是幾何)的有用的學(xué)習(xí)工具。教學(xué)手段及教學(xué)方法的改革勢(shì)在必行,積極有效地采用先進(jìn)的手段和技術(shù), 必然會(huì)推動(dòng)課堂教學(xué)結(jié)構(gòu)、教學(xué)思想以及教學(xué)理論體系的改革與發(fā)展。先讓學(xué)生猜測(cè)這樣的點(diǎn)的軌跡是什么圖形,學(xué)生各抒己見(jiàn)之后,老師演示圖7(1),學(xué)生豁然開(kāi)朗:“原來(lái)是橢圓”。這樣,《幾何畫(huà)板》又以其極強(qiáng)的運(yùn)算功能和圖形圖象功能在解析幾何的教與學(xué)中大顯身手。像在講二面角的定義時(shí)(如圖2),當(dāng)拖動(dòng)點(diǎn)A時(shí),點(diǎn)A所在的半平面也隨之轉(zhuǎn)動(dòng),即改變二面角的大小,圖形的直觀地變動(dòng)有利于幫助學(xué)生建立空間觀念和空間想象力;在講棱臺(tái)的概念時(shí),可以演示由棱錐分割成棱臺(tái)的過(guò)程(如圖3),更可以讓棱錐和棱臺(tái)都轉(zhuǎn)動(dòng)起來(lái),使學(xué)生在直觀掌握棱臺(tái)的定義,并通過(guò)棱臺(tái)與棱錐的關(guān)系由棱錐的性質(zhì)得出棱臺(tái)的性質(zhì)的同時(shí),讓學(xué)生欣賞到數(shù)學(xué)的美,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;在講錐體的體積時(shí),可以演示將三棱柱分割成三個(gè)體積相等的三棱錐的過(guò)程(如圖4),既避免了學(xué)生空洞的想象而難以理解,又鍛煉了學(xué)生用分割幾何體的方法解決問(wèn)題的能力。如兩條互相垂直的直線不一定畫(huà)成交角為直角的兩條直線;正方體的各面不能都畫(huà)成正方形等。例如,借助于圖形對(duì)不等式的一些性質(zhì)、定理和解法進(jìn)行直觀分析──由“半徑不小于半弦”證明不等式“a+b≥2(a、b∈R+)等;再比如,講解數(shù)列的極限的概念時(shí),作出數(shù)列an=10n的圖形(即作出一個(gè)由離散點(diǎn)組成的函數(shù)圖象),觀察曲線的變化趨勢(shì),并利用《幾何畫(huà)板》的制表功能以“項(xiàng)數(shù)、這一項(xiàng)的值、這一項(xiàng)與0的絕對(duì)值”列表,幫助學(xué)生直觀地理解這一較難的概念?!焙瘮?shù)的兩種表達(dá)方式──解析式和圖象──之間常常需要對(duì)照(如研究函數(shù)的單調(diào)性、討論方程或不等式的解的情況、比較指數(shù)函數(shù)和對(duì)數(shù)函數(shù)圖象之間的關(guān)系等)?!币虼?,隨著計(jì)算機(jī)多媒體的出現(xiàn)和飛速發(fā)展,在網(wǎng)絡(luò)技術(shù)廣泛應(yīng)用于各個(gè)領(lǐng)域的同時(shí),也給學(xué)校教育帶來(lái)了一場(chǎng)深刻的變革──用計(jì)算機(jī)輔助教學(xué),改善人們的認(rèn)知環(huán)境──越來(lái)越受到重視。第四篇:淺談幾何畫(huà)板在教學(xué)中的應(yīng)用淺談《幾何畫(huà)板》在數(shù)學(xué)教學(xué)中的應(yīng)用常寧市職業(yè)中專(zhuān) 譚新芽對(duì)于數(shù)學(xué)科學(xué)來(lái)說(shuō)主要是抽象思維和理論思維,這是事實(shí);但從人類(lèi)數(shù)學(xué)思維系統(tǒng)的發(fā)展來(lái)說(shuō),形象思維是最早出現(xiàn)的,并在數(shù)學(xué)研究和教學(xué)中都起著重要的作用。立刻就有同學(xué)著手證明,在總結(jié)出一般解法之后,教師進(jìn)一步提出問(wèn)題,四邊形、五邊形、六邊形、七邊形??內(nèi)角和的讀數(shù)和是多少呢?一節(jié)課在積極熱烈的氣氛中進(jìn)行著。如今,利用畫(huà)板幾下就可以繪出金光閃閃的五角星、旋轉(zhuǎn)變換的正方形組合等等一系列能體現(xiàn)數(shù)學(xué)美麗一面的圖形。尤其是圖像和各系數(shù)的關(guān)系這一內(nèi)容,學(xué)生理解起來(lái)有很大困難?!皵?shù)形結(jié)合”是學(xué)習(xí)數(shù)學(xué)的重要方法,用圖形解釋抽象的數(shù)學(xué)現(xiàn)象形象、直觀。關(guān)鍵是問(wèn)題情境的創(chuàng)設(shè)對(duì)
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1