【摘要】Bayesianworks貝葉斯網(wǎng)絡(luò)Frequentistvs.Bayesian客觀vs.主觀Frequentist(頻率主義者):概率是長期的預(yù)期出現(xiàn)頻率.P(A)=n/N,wherenisthenumberoftimeseventAoccursinNopportunities.“某事發(fā)生的概率是”
2025-02-19 12:56
【摘要】貝葉斯決策論和參數(shù)估計孟濤2022年4月11日提綱?貝葉斯決策論?最小誤差率分類?分類器、判別函數(shù)及判定面?正態(tài)密度和判別函數(shù)?貝葉斯置信網(wǎng)?最大似然估計?貝葉斯估計貝葉斯決策論?貝葉斯公式?貝葉斯公式的意義?判定的誤差概率?平均誤差概率?四
2025-08-04 10:26
【摘要】MCMC方法??一、貝葉斯統(tǒng)計的框架分析困難:后驗分布是復(fù)雜的、高維的分布解決方法:馬爾可夫鏈蒙特卡羅(MCMC)方法后驗分布先驗信息似然函數(shù)?目前,MCMC已經(jīng)成為一種處理復(fù)雜統(tǒng)計問題的特別流行的工具,尤其在經(jīng)常需要復(fù)雜的高維積分運算的貝葉斯分析領(lǐng)域更是如此。在那里,高
2025-01-19 09:54
【摘要】貝葉斯空間計量模型一、采用貝葉斯空間計量模型的原因殘差項可能存在異方差,而?ML?估計方法的前提是同方差,因此,當(dāng)殘差項存在異方差時,采用?ML?方法估計出的參數(shù)結(jié)果不具備穩(wěn)健性。二、貝葉斯空間計量模型的估計方法(一)待估參數(shù)對于空間計量模型(以空間自回歸模型為例)y
2025-06-24 20:01
【摘要】17/18第四章貝葉斯分析BayeseanAnalysis§一、決策問題的表格表示——損失矩陣對無觀察(No-data)問題a=δ可用表格(損失矩陣)替代決策樹來描述決策問題的后果(損失):……π()…π()…
【摘要】貝葉斯估計BayesEstimation數(shù)理統(tǒng)計課題組例子:?某人打靶,打了5槍,槍槍中靶,?問:此人槍法如何??某人打靶,打了500槍,槍槍中靶,?問:此人槍法如何??經(jīng)典方法:極大似然估計:100%?但是:……幾個學(xué)派(1)?經(jīng)典學(xué)派:頻率學(xué)派,抽樣學(xué)派?帶頭
2025-07-21 12:43
【摘要】§經(jīng)典線性計量經(jīng)濟學(xué)模型的貝葉斯估計BayesianEstimation,BayesianEconometrics一、貝葉斯估計二、單方程計量經(jīng)濟學(xué)模型的貝葉斯估計三、例題說明?在《EconometricAnalysis》(第3版)中:–Chapter6TheClassical
2025-05-03 18:19
【摘要】4貝葉斯估計方法Bayes推理的提出Bayes推理的基本思想Bayes推理公式Bayes推理應(yīng)用實例基于Bayes推理的數(shù)據(jù)融合方法融合實例Bayes推理的缺點2Bayes推理的提出貝葉斯ThomasBayes英國數(shù)學(xué)家。1702年出生于倫敦,做過神
2025-05-07 01:38
【摘要】......淺談貝葉斯公式及其應(yīng)用摘要貝葉斯公式是概率論中很重要的公式,在概率論的計算中起到很重要的作用。本文通過對貝葉斯公式進行分析研究,同時也探討貝葉斯公式在醫(yī)學(xué)、市場預(yù)測、信號估計、概率推理以及工廠產(chǎn)品檢查等方面的一些
2025-06-20 01:16
【摘要】第一節(jié)貝葉斯推斷方法第二節(jié)貝葉斯決策方法第十一章貝葉斯估計第一節(jié)貝葉斯推斷方法一、統(tǒng)計推斷中可用的三種信息美籍波蘭統(tǒng)計學(xué)家耐曼(-1981)高度概括了在統(tǒng)計推斷中可用的三種信息:1.總體信息,即總體分布或所屬分布族給我們的信息。譬如“總體視察指數(shù)分布”或“總體是正態(tài)
2025-05-07 01:39
【摘要】1ArtificialIntelligence:BayesianNetworks2GraphicalModels?Ifnoassumptionofindependenceismade,thenanexponentialnumberofparametersmustbeestimatedforsoundprobabil
2025-07-24 21:55
【摘要】基于貝葉斯的判別理論及其算法實現(xiàn)計算機科學(xué)與技術(shù),2011,碩士【摘要】在全球信息化浪潮的推動下,數(shù)據(jù)挖掘技術(shù)的研究和應(yīng)用迅速發(fā)展。如何從海量的數(shù)據(jù)里“挖掘”或“發(fā)現(xiàn)”隱含的、有用的信息和知識,成為各類數(shù)據(jù)庫的應(yīng)用研究中越來越重要的課題。其中,對研究對象進行分類的判別分析是數(shù)據(jù)挖掘的一類重要基礎(chǔ)理論。所謂判別分析,是指在分類情況明確的條件下,依據(jù)目標(biāo)對象具有的各類屬性的特征值判定其
2025-06-19 23:06
【摘要】1第四節(jié)2全概率公式和貝葉斯公式主要用于計算比較復(fù)雜事件的概率,它們實質(zhì)上是加法公式和乘法公式的綜合運用.綜合運用加法公式P(A+B)=P(A)+P(B)A、B互不相容乘法公式P(AB)=P(A)P(B|A)P(A)03設(shè)nAAA,,,21?為一個
2025-08-04 14:06
【摘要】貝葉斯估計及其在抽樣調(diào)查中的應(yīng)用2(Bayes,Thomas)(1702─1761)貝葉斯是英國數(shù)學(xué)家.1702年生于倫敦;1761年4月17日卒于坦布里奇韋爾斯.貝葉斯是一位自學(xué)成才的數(shù)學(xué)家.曾助理宗教事務(wù),后來長期擔(dān)任坦布里奇韋爾斯地方教堂的牧師.1742年,貝葉斯被選為英
2025-02-27 04:54
【摘要】一、非參數(shù)經(jīng)驗貝葉斯估計二、參數(shù)經(jīng)驗貝葉斯估計第經(jīng)驗貝葉斯估計0、背景與意義貝葉斯估計存在的問題:先驗分布的確定如何客觀地確定先驗分布?根據(jù)歷史資料數(shù)據(jù)(即經(jīng)驗)確定該問題的先驗分布,其對應(yīng)的貝葉斯估計稱為經(jīng)驗貝葉斯估計.該方法是由Robbins在1955年提出的.經(jīng)驗貝葉斯估計分類(共
2025-08-04 23:35