【摘要】新課標人教版課件系列《高中數(shù)學(xué)》必修5《基本不等式-實際應(yīng)用》審校:王偉?掌握建立不等式模型解決實際問題.?教學(xué)重點:?掌握建立不等式模型解決實際問題教學(xué)目標例1.一般情況下,建筑民用住宅時。民用住宅窗戶的總面積應(yīng)小于該住宅的占地面積,而窗戶的總面積與占地面積的比值越大
2025-01-15 12:36
【摘要】第三節(jié)基本不等式及其應(yīng)用基礎(chǔ)梳理1.基本不等式.2abab?(1)基本不等式成立的條件:________.(2)等號成立的條件:當且僅當________時取等號.a(chǎn)≥0,b≥0a=b2.幾個重要的不等式(1)a2+b2≥________(a,b∈R).(2)baab??___
2025-11-03 16:44
【摘要】:2baab??復(fù)習(xí)引入1.基本不等式:;)(2,,)1(22”號時取“當當且僅那么如果?????baabbaRba復(fù)習(xí)引入1.基本不等式:;)(2,,)1(22”號時取“當當且僅那么如果?????baabbaRba;)(2,,)2
2025-11-09 08:51
【摘要】:學(xué)案(第一課時)一、學(xué)習(xí)目標基本不等式:適用條件:二、典型例題例1.(1)已知正數(shù)滿足,則的最小值是.(2)已知正數(shù)滿足,則的最大值是.變式:已知,則的最小值是.(3)在下列條件中,最小值為2的是()A.()B.()
2025-08-17 05:25
【摘要】基本不等式:(第1課時)學(xué)習(xí)目標,用數(shù)形結(jié)合的思想理解基本不等式...合作學(xué)習(xí)一、設(shè)計問題,創(chuàng)設(shè)情境第24屆國際數(shù)學(xué)家大會于2021年在北京召開,右面是大會的會標,其中的圖案大家見過嗎?在此圖中有哪些幾何圖形?你能發(fā)現(xiàn)圖形中隱含的不等關(guān)系嗎?若我們設(shè)圖中直角三角形的直角邊分別為x,y,你
2024-12-08 02:40
【摘要】《基本不等式》同步測試一、選擇題,本大題共10小題,每小題4分,滿分40分,在每小題給出的四個選項中,只有一項是符合題目要求的.1.若a?R,下列不等式恒成立的是()A.21aa??B.2111a??C.296aa??D.2lg(1)lg|2|aa??
2025-11-06 21:17
【摘要】第一頁,編輯于星期六:點三十六分。,第一課時基本不等式,第二頁,編輯于星期六:點三十六分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁,編輯于星期六:點三十六分。,第四頁,編輯于星期六:點三十六分。,第...
2025-10-13 19:01
【摘要】§二元一次不等式(組)與平面區(qū)域(一)臨沂一中趙偉偉【授課類型】新授課【教學(xué)目標】1.知識與技能:了解二元一次不等式(組)產(chǎn)生的實際背景,會用平面區(qū)域表示二元一次不等式組的解集;2.過程與方法:初步經(jīng)歷從實
2025-11-10 07:32
【摘要】主講老師::復(fù)習(xí)引入1.基本不等式:復(fù)習(xí)引入1.基本不等式:復(fù)習(xí)引入1.基本不等式:前者只要求a,b都是實數(shù),而后者要求a,b都是正數(shù).;SMT貼片SMTSMT貼片加工SMT加工貼片加工廠;出歷陽文育羊柬進攻彭城安都領(lǐng)步
2025-08-16 01:54
【摘要】課題:一元二次不等式及其解法(第二課時)河南省許昌市襄城縣實驗高中王朝陽教學(xué)設(shè)計課題:一元二次不等式及其解法(第二課時)教學(xué)目標:1、知識與技能目標:
2024-11-28 18:27
【摘要】:)1(2baab??問題探究.)2()0,0(22:)1.(122立的條件請寫出上述兩式等號成②①請你證明探究??????baabbaabba.,1.,)1.(2請你找出并證明中的一個不等式著探究其中隱含形的直角三角形圍成正方分別為以四個全等的兩直角邊探究ABC
2025-03-12 14:58
【摘要】 不等式(一)不等式與不等關(guān)系1、應(yīng)用不等式(組)表示不等關(guān)系;不等式的主要性質(zhì):(1)對稱性: (2)傳遞性:(3)加法法則:;(同向可加)(4)乘法法則:; (同向同正可乘)(5)倒數(shù)法則: (6)乘方法則:(7)開方法則:2、應(yīng)用不等式的性質(zhì)比較兩個實數(shù)的大?。鹤鞑罘ǎㄗ鞑睢冃巍袛喾枴Y(jié)論)3、應(yīng)用不等式性質(zhì)證
2025-04-04 04:49
【摘要】如果a,b∈R,那么a2+b2≥2ab(當且僅當a=b時取“=”)證明:222)(2baabba??????????????0)(0)(22babababa時,當時,當abba222??1.定理適用范圍:Rba?,2.取“=”的條件:ba?定理:
2025-11-09 08:48
【摘要】基本不等式與最大(?。┲祷静坏仁饺绻际钦龜?shù),那么,當且僅當都是正數(shù)時,等號成立.abba??2ba,CAOBD問題1.把一段16㎝長的鐵絲彎成形狀不同的矩形,什么時候面積最大?2.在面積為16c㎡的所有不同形狀的矩形中
【摘要】不等式的實際應(yīng)用1.解有關(guān)不等式的應(yīng)用題,首先要選用合適的字母表示題中的未知數(shù),再由題中給出的不等量關(guān)系,列出關(guān)于未知數(shù)的不等式(組),然后解列出的不等式(組),最后結(jié)合問題的實際意義寫出答案.2.在實際應(yīng)用問題中,若應(yīng)用均值不等式求最值同樣必須確保“一正、二定、三相等”的原則.“一正”即必須滿
2025-11-10 23:20