【摘要】北師大版九年級下冊數(shù)學、對稱軸和頂點坐標.(1)y=2(x-3)2-5(2)y=-(x+1)2(3)y=3(x+4)2+2移得到的?情境導入1.(1)開口:向上,對稱軸:直線x=3,頂點坐標(3,-5)(2)開口:向下,對稱軸:直線x=-1,頂點坐標(-1,0)(3)開口:向上,對稱軸:
2025-06-17 23:45
【摘要】北師大版九年級下冊數(shù)學的圖象的頂點坐標是;開口方向是;最值是.y=-2x2+3的圖象可由函數(shù)的圖象向平移個單位得到.y=-3x2的圖象向下平移2個單位可得
2025-06-17 23:51
【摘要】二次函數(shù)的圖象與性質(zhì)第1章二次函數(shù)第4課時二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)知識目標目標突破第1章二次函數(shù)總結反思知識目標第4課時二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)1.通過回顧圖象的平移,理解拋物線y=ax2平移到拋
2025-06-14 12:04
【摘要】二次函數(shù)的圖象與性質(zhì)第1章二次函數(shù)第3課時二次函數(shù)y=a(x-h(huán))2的圖象與性質(zhì)知識目標目標突破第1章二次函數(shù)總結反思知識目標第3課時二次函數(shù)y=a(x-h(huán))2的圖象與性質(zhì)1.通過比較同一平面直角坐標系中二次函數(shù)y=ax2和y=a(
2025-06-17 12:12
【摘要】27.2二次函數(shù)的圖象與性質(zhì)(2)教學目標:1、會用描點法畫出二次函數(shù)的圖象,能通過圖象和關系式認識二次函數(shù)的性質(zhì).2、會運用配方法確定二次函數(shù)圖象的頂點、開口方向和對稱軸.重點:二次函數(shù)的圖象與性質(zhì)難點:二次函數(shù)的圖象與性質(zhì)本節(jié)知識點會畫出這類函數(shù)的圖象,通過比較,了解這類函數(shù)的性質(zhì).教學過程同學們還記得一次函數(shù)與的圖象的關系嗎?
2025-08-21 14:00
【摘要】北師大版九年級下冊數(shù)學函數(shù)y=x2y=-x2函數(shù)y=x2和y=-x2的圖象x24-2y=x2y=-x2圖象形狀開口方向?qū)ΨQ軸頂點坐標拋物線拋物線向上向下y軸y軸(O,0)
2025-06-17 23:42
【摘要】二次函數(shù)的圖象與性質(zhì)第1章二次函數(shù)第2課時二次函數(shù)y=ax2(a0)的圖象與性質(zhì)知識目標目標突破第1章二次函數(shù)總結反思知識目標第2課時二次函數(shù)y=ax2(a0)的圖象與性質(zhì)1.通過回顧軸對稱圖形的性質(zhì),能利用軸對稱性畫二次函數(shù)y=ax2
【摘要】二次函數(shù)的圖象與性質(zhì)第1章二次函數(shù)第5課時二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)知識目標目標突破第1章二次函數(shù)總結反思知識目標第5課時二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)1.通過回顧利用配方法解一元二次方程,會用配方法將二次函數(shù)的一般形式轉化為頂點式.
2025-06-16 14:38
【摘要】2xy?2xy??二次函數(shù)y=±x2的性質(zhì)1.頂點坐標與對稱軸2.位置與開口方向3.增減性與最值拋物線頂點坐標對稱軸位置開口方向增減性最值y=x2y=-x2(0,0)(0,0)y軸y軸在x軸的上方(除頂點外)在x軸的下方
2025-11-13 04:06
【摘要】第一篇:二次函數(shù)的圖象與性質(zhì)教學反思 2y=ax+c的圖象與性質(zhì)的教學反思二次函數(shù) 這節(jié)課是青島版九年級數(shù)學下冊的一節(jié)探究課。在教學中我采用了體驗探究的教學方式,在教師的配合引導下,讓學生自己動手...
2025-10-15 12:30
【摘要】 《二次函數(shù)的圖象與性質(zhì)》教學設計 課時題目:二次函數(shù)的圖象與性質(zhì) 教學目標: 1.能畫二次函數(shù)的圖象,并能夠比較它們與二次函數(shù)的圖象的異同,理解對二次函數(shù)圖象的影響. 2.能說出...
2025-04-03 04:40
【摘要】二次函數(shù)的圖象和性質(zhì)(1)陂西中學鄧新騰拋物線和y=ax2+k的圖像與性質(zhì)?y=ax2y=ax2+ka>0a<0圖象開口對稱軸頂點最值增減性開口向上
2025-11-13 02:30
【摘要】二次函數(shù)的圖象和性質(zhì)2淡村鎮(zhèn)初級中學劉楓y=-2x2的圖象,并指出它的開口方向、對稱軸以及頂點坐標。y=2x2的圖象,并指出它的開口方向、對稱軸以及頂點坐標。y=ax2的圖象,并指出它的開口方向、對稱軸以及頂點坐標。a0,開口向上a0,開口向下對稱軸為y軸頂點坐標為(0,0)
【摘要】3.求二次函數(shù)的關系式,第一頁,編輯于星期六:六點四十七分。,1.使學生掌握用待定系數(shù)法由已知圖象上三個點的坐標求二次函數(shù)的關系式.2.使學生掌握已知拋物線的頂點坐標或?qū)ΨQ軸等條件求出函數(shù)的關系式.3...
2025-10-16 02:19
【摘要】二次函數(shù)y=ax2+k的圖象與性質(zhì)【溫故而知新】?回憶二次函數(shù)y=ax2(a≠0)的圖象及性質(zhì)在同一坐標系內(nèi)畫出函數(shù)y=x2、y=x2+1與y=x2-1的圖象。解:x…-2-1012…y=x2…41014…y=x2+1…52125…y=x2-1…30-
2025-11-21 03:33