【摘要】授課人:黎衛(wèi)元Thereisnoelevatortosuccess----onlystairs.成功沒(méi)有電梯,只有一步一個(gè)腳印的樓梯兩岸直航(1)由于大陸和臺(tái)灣沒(méi)有直航,因此2020年春節(jié)探親,乘飛機(jī)要先從臺(tái)北到香港,再?gòu)南愀鄣缴虾?,這兩次位移之和是什么?臺(tái)北香港
2024-11-06 13:47
【摘要】 向量數(shù)乘運(yùn)算及其幾何意義 考試標(biāo)準(zhǔn) 課標(biāo)要點(diǎn) 學(xué)考要求 高考要求 向量的數(shù)乘運(yùn)算 c c 向量數(shù)乘運(yùn)算的幾何意義 b b 知識(shí)導(dǎo)圖 學(xué)法指導(dǎo) ...
2025-04-03 04:15
【摘要】平面向量共線的坐標(biāo)表示學(xué)習(xí)目標(biāo):1.理解用坐標(biāo)表示的平面向量共線的條件.2.能根據(jù)平面向量的坐標(biāo),判斷向量是否共線.3.掌握三點(diǎn)共線的判斷方法.【學(xué)法指導(dǎo)】1.應(yīng)用平面向量共線條件的坐標(biāo)表示來(lái)解決向量的共線問(wèn)題優(yōu)點(diǎn)在于不需要引入?yún)?shù)“λ”,從而減少了未知數(shù)的個(gè)數(shù),而且使問(wèn)題具有代數(shù)化的特點(diǎn)、程序
2024-11-19 20:38
【摘要】向量的線性運(yùn)算向量的加法一、填空題1.已知向量a表示“向東航行1km”,向量b表示“向南航行1km”,則a+b表示_______.①向東南航行2km②向東南航行2km③向東北航行2km④向東北航行2km2.在平行四邊形ABCD中,BC→+DC→+BA→+DA→
2024-12-05 03:24
【摘要】對(duì)數(shù)與對(duì)數(shù)運(yùn)算第一課時(shí)對(duì)數(shù)的概念三維目標(biāo)定向〖知識(shí)與技能〗理解對(duì)數(shù)的概念,掌握對(duì)數(shù)恒等式及常用對(duì)數(shù)的概念,領(lǐng)會(huì)對(duì)數(shù)與指數(shù)的關(guān)系?!歼^(guò)程與方法〗從指數(shù)函數(shù)入手,引出對(duì)數(shù)的概念及指數(shù)式與對(duì)數(shù)式的關(guān)系,得到對(duì)數(shù)的三條性質(zhì)及對(duì)數(shù)恒等式?!记楦小B(tài)度與價(jià)值觀〗增強(qiáng)數(shù)學(xué)的理性思維能力及用普遍聯(lián)系、變化發(fā)展的眼光看待問(wèn)題的能
2024-12-08 01:57
【摘要】對(duì)數(shù)與對(duì)數(shù)運(yùn)算[備用習(xí)題]()A.10410753aaaaa???B.6522)(yxyxyxy???C.8157332babaabba?D.33)1255(?=5+125125521253??答案:Ba0,r,s∈Q,以下運(yùn)算中正確
【摘要】平面向量數(shù)量積的物理背景及其含義學(xué)習(xí)目標(biāo):1.了解平面向量數(shù)量積的物理背景,即物體在力F的作用下產(chǎn)生位移s所做的功.2.掌握平面向量數(shù)量積的定義和運(yùn)算律,理解其幾何意義.3.會(huì)用兩個(gè)向量的數(shù)量積求兩個(gè)向量的夾角以及判斷兩個(gè)向量是否垂直.學(xué)習(xí)重點(diǎn):向量的數(shù)量積是一種新的乘法,和向量的線性運(yùn)算有著顯著的區(qū)
2024-12-05 06:47
【摘要】平面向量數(shù)量積的物理背景及其含義【學(xué)習(xí)要求】1.掌握平面向量數(shù)量積的運(yùn)算律及常用的公式.2.會(huì)利用向量數(shù)量積的有關(guān)運(yùn)算律進(jìn)行計(jì)算或證明.學(xué)習(xí)重點(diǎn):面向量數(shù)量積的運(yùn)算律及常用的公式學(xué)習(xí)難點(diǎn):利用向量數(shù)量積的有關(guān)運(yùn)算律進(jìn)行計(jì)算或證明.【學(xué)法指導(dǎo)】引進(jìn)向量的數(shù)量積以后,考察一下這種運(yùn)算的運(yùn)算律是非常必要的.向量a、b的數(shù)量積a
【摘要】導(dǎo)數(shù)的概念、運(yùn)算及其幾何意義1.已知物體做自由落體運(yùn)動(dòng)的方程為若無(wú)限趨近于0時(shí),無(wú)限趨近于,那么正確的說(shuō)法是()A.是在0~1s這一段時(shí)間內(nèi)的平均速度B.是在1~(1+)s這段時(shí)間內(nèi)的速度C.是物體從1s到(1+)s這段時(shí)間內(nèi)的平均速度D.是物體在這一時(shí)刻的瞬時(shí)速度.2.已知函數(shù)f’(x)=3x2,則f
2025-04-04 05:08
【摘要】向量減法運(yùn)算及其幾何意義??谒闹虚喿x與理解閱讀課本P85頁(yè),10分鐘后檢測(cè)探究:向量是否有減法?復(fù)習(xí):實(shí)數(shù)減法的意義是什么?答:減去一個(gè)數(shù)等于加上這個(gè)數(shù)的相反數(shù),即a-b=a+(-b)猜想:向量減法的意義是什么?答:減去一個(gè)向量等于加上這個(gè)向量的相反向量,即a-b=a+(-b)類比相反數(shù)
2025-07-18 11:57
【摘要】平面幾何中的向量方法學(xué)習(xí)目標(biāo)、垂直、相等、夾角和距離等問(wèn)題.——向量法和坐標(biāo)法.,體驗(yàn)向量在解決幾何問(wèn)題中的工具作用,培養(yǎng)創(chuàng)新精神.合作學(xué)習(xí)一、設(shè)計(jì)問(wèn)題,創(chuàng)設(shè)情境問(wèn)題1:若O為△ABC重心,則=.問(wèn)題2:水渠橫斷面是四邊形ABCD,,且||=||,則這個(gè)四邊形為.
【摘要】課題平面向量基本定理教學(xué)目標(biāo)知識(shí)與技能理解平面向量基本定理的內(nèi)容,了解向量一組基底的含義過(guò)程與方法在平面內(nèi),當(dāng)一組基底選定后,會(huì)用這組基底來(lái)表示其他向量情感態(tài)度價(jià)值觀啟發(fā)引導(dǎo),講練結(jié)合重點(diǎn)會(huì)應(yīng)用平面向量基本定理解決有關(guān)平面向量的綜合問(wèn)題難點(diǎn)同上教學(xué)設(shè)
【摘要】《向量的加法運(yùn)算及其幾何意義》教案教學(xué)目標(biāo):1、掌握向量的加法運(yùn)算,并理解其幾何意義;2、會(huì)用向量加法的三角形法則和平行四邊形法則作兩個(gè)向量的和向量,培養(yǎng)數(shù)形結(jié)合解決問(wèn)題的能力;3、通過(guò)將向量運(yùn)算與熟悉的數(shù)的運(yùn)算進(jìn)行類比,使學(xué)生掌握向量加法運(yùn)算的交換律和結(jié)合律,并會(huì)用它們進(jìn)行向量計(jì)算,滲透類比的數(shù)學(xué)方法;教學(xué)重點(diǎn):會(huì)用向量加法的三角形法則和平行四邊形法則作兩個(gè)向量的
2025-08-04 23:07
【摘要】講練學(xué)案部分§空間向量及其加減運(yùn)算.知識(shí)點(diǎn)一空間向量的概念判斷下列命題是否正確,若不正確,請(qǐng)簡(jiǎn)述理由.①向量AB與AC是共線向量,則A、B、C、D四點(diǎn)必在一條直線上;②②單位向量都相等;③任一向量與它的相反向量不相等;④四邊形ABCD是平行四邊形
2024-12-08 01:49
【摘要】平面向量應(yīng)用舉例命題方向1向量在平面幾何中的應(yīng)用例1求證:直徑所對(duì)的圓周角為直角.[分析]本題實(shí)質(zhì)就是證明AB→2BC→=0.[證明]設(shè)AO→=a,OB→=b,則AB→=a+b,OC→=a,BC→=a-b,|a|=|b|.
2024-11-19 19:09