【摘要】等差數(shù)列的前n項和(二)自主學(xué)習(xí)知識梳理1.前n項和Sn與an之間的關(guān)系對任意數(shù)列{an},Sn是前n項和,Sn與an的關(guān)系可以表示為an=??????n=1?,?n≥2?.2.等差數(shù)列前n項和公式Sn=____________=______
2024-11-19 05:04
【摘要】等差數(shù)列前n項和一、目標分析1、教學(xué)目標依據(jù)教學(xué)大綱的教學(xué)要求,滲透新課標理念,并結(jié)合以上學(xué)情分析,我制定了如下教學(xué)目標:●知識技能(1)掌握等差數(shù)列前n項和公式;(2)
2025-06-07 22:04
【摘要】《等差數(shù)列前n項和的公式》說課稿教學(xué)目標:A、知識目標:掌握等差數(shù)列前n項和公式的推導(dǎo)方法;掌握公式的運用。B、能力目標:(1)通過公式的探索、發(fā)現(xiàn),在知識發(fā)生、發(fā)展以及形成過程中培養(yǎng)學(xué)生觀察、聯(lián)想、歸納、分析、綜合和邏輯推理的能力。(2)利用以退求進的思維策略,遵循從特殊到一般的認知規(guī)律,讓學(xué)生在實踐中通過觀察、嘗試、分析、類比的方
2025-08-26 11:26
【摘要】由此題,如何通過數(shù)列前n項和來求數(shù)列通項公式???首項與公差各是多少?數(shù)列嗎?如果是,它的并判斷這個數(shù)列是等差,求這個數(shù)列的通項公式項和為的前:已知數(shù)列例,1212nnSnann??)1(?????????????n1na2a1a1nSna1na2a1anS??與解:根據(jù)212122122)]1()1[()(1???????
2024-11-10 00:24
【摘要】等差數(shù)列及前n項和教學(xué)目標:求和公式的性質(zhì)及應(yīng)用,Sn與an的關(guān)系以及數(shù)列求和的方法。教學(xué)重點:求和公式的性質(zhì)應(yīng)用。難點:求和公式的性質(zhì)運用以及數(shù)列求和的方法引入??2n11nn-1ddS=na+d=n+a-n222??????可見d≠0時,
2025-05-12 17:19
【摘要】泰姬陵座落于印度古都阿格,是十七世紀莫臥兒帝國皇帝沙杰罕為紀念其愛妃所建,她宏偉壯觀,純白大理石砌建而成的主體建筑叫人心醉神迷,成為世界七大奇跡之一。陵寢以寶石鑲飾,圖案之細致令人叫絕。傳說陵寢中有一個三角形圖案,以相同大小的圓寶石鑲飾而成,共有100層(見左圖),奢靡之程度,可見一斑
2024-11-10 00:47
【摘要】等差數(shù)列的前n項和教材分析等差數(shù)列的前n項和是數(shù)列的重要內(nèi)容,也是數(shù)列研究的基本問題.在現(xiàn)實生活中,等差數(shù)列的求和是經(jīng)常遇到的一類問題.等差數(shù)列的求和公式,為我們求等差數(shù)列的前n項和提供了一種重要方法.教材首先通過具體的事例,探索歸納出等差數(shù)列前n項和的求法,接著推廣到一般情況,推導(dǎo)出等差數(shù)列的前n項和公式.為深化對公式的理解,通過對具體例子的研究,弄清等差數(shù)列的前n項和與等差
2025-06-07 23:54
【摘要】等差數(shù)列及其前n項和-復(fù)習(xí)講義一、知識梳理1.等差數(shù)列的常用性質(zhì)(1)通項公式的推廣:an=am+(n-m)d,(n,m∈N*).(2)若{an}為等差數(shù)列,且k+l=m+n,(k,l,m,n∈N*),則ak+al=am+an.(3)若{an}是等差數(shù)列,公差為d,則{a2n}也是等差數(shù)列,公差為2d.(4)若{an},{bn}是等差數(shù)列,則{pan+qbn}也是等差數(shù)列
2025-04-17 07:58
【摘要】《等差數(shù)列的前n項和》的說課稿 尊敬的各位專家、評委: 上午好! 我叫鄭永鋒,來自安慶師范學(xué)院。今天我說課的課題是人教A版必修5第二章第三節(jié)《等差數(shù)列的前n項和》。 我嘗試...
2024-12-06 01:24
【摘要】第二節(jié)等差數(shù)列及其前n項和基礎(chǔ)梳理從第二項起,每一項與前一項的差都等于同一個常數(shù)常數(shù)公差d遞增數(shù)列遞減數(shù)列常數(shù)列1.等差數(shù)列的定義如果一個數(shù)列,那么這個數(shù)列就叫做等差數(shù)列,這個叫做等差數(shù)列的,通常用字母表示.當(dāng)d
2024-11-11 05:49
【摘要】第一篇:等差數(shù)列前n項和教案 等差數(shù)列的前n項和教案 一、教學(xué)目標: 知識與技能目標: 掌握等差數(shù)列前n項和公式,能熟練應(yīng)用等差數(shù)列前n項和公式。過程與方法目標: 經(jīng)歷公式的推導(dǎo)過程,體驗從...
2024-10-25 12:44
【摘要】等差數(shù)列的前n項和第一課時一般地,我們稱a1+a2+…+an為數(shù)列{an}的前n項和,常用Sn表示,即Sn=a1+a2+…+an練習(xí):試求下列數(shù)列的前100項和.(1)2,2,2,2,……(2)-1,1,-1,1,……(3)1,2,3,4,……一、新課1
2024-11-17 12:02
【摘要】等差數(shù)列的前n項和第三課時2.等差數(shù)列的前n項和公式:1()2nnnaaS??1.若已知數(shù)列{an}前n項和為Sn,則該數(shù)列的通項公式為S1,n=1Sn-Sn-1,n≥2an=一、復(fù)習(xí)3.若數(shù)列{an}為等差數(shù)列:1(1)2nnnad
【摘要】要點梳理如果一個數(shù)列,那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的,通常用字母表示.如果等差數(shù)列{an}的首項為a1,公差為d,那么它的通項公式是.§等差數(shù)列及其前n項和從第二項起每一項與它相鄰前面一項的差是同一個常數(shù)公差dan=a1
2025-08-05 15:48
【摘要】等差數(shù)列前n項和的最值問題問題引入:已知數(shù)列的前n項和,?如果是,它的首項與公差分別是什么?解:當(dāng)n1時:當(dāng)n=1時:綜上:,其中:,探究1:一般地,如果一個數(shù)列的前n項和為:其中:,且p0,那么這個數(shù)列一定是等差數(shù)列嗎?如果是,它的首項和公差分別是什么?結(jié)論:當(dāng)r=0時為等差,當(dāng)r0時不是一、應(yīng)用二次函數(shù)圖象求解最值例1:等差數(shù)列中,,則n的取值為多少時
2025-03-25 06:56