【摘要】1.3三角形的高同步練習一、基礎訓練任意三角形的高,下列說法不正確的是()A.銳角三角形有三條高B.直角三角形只有一條高C.鈍角三角形有兩條高在三角形的外部D.任意三角形都有三條高2.下列各個圖形中,AD是ABC?的高的是()[3.如圖,在ABC?中,BD是AC邊上的高,若
2025-11-26 16:20
【摘要】1.5三角形全等的條件(一)同步練習【知識提要】1.掌握已知三邊畫三角形的方法.2.掌握邊邊邊公理,能用邊邊邊公理說明兩個三角形全等.3.了解三角形的穩(wěn)定性.【學法指導】1.在公理形成過程中學會實驗、觀察、歸納.2.通過幾何說明養(yǎng)成尊重客觀事實、形成質疑的習慣.
2025-11-06 12:39
【摘要】三角形的內切圓高臺縣二中張維忠如圖是一塊三角形木料,木工師傅要從中裁下一塊圓形用料,怎樣才能使裁下的圓的面積盡可能大呢?ABC三角形的內切圓ABC和三角形各邊都相切的圓叫三角形的內切圓三角形叫圓的外切三角形問題1:作圓的關鍵是什么?問
2025-10-29 02:32
【摘要】與三角形的內切圓有關的幾個結論鄭建元(浙江省余姚市實驗學校 315400)三角形與其內切圓是直線與圓位置關系的重要內容,運用切線、面積等知識可得到一些重要的結論,特別是當三角形是直角三角形時,結論尤為豐富.如果我們平時解題的時候,不滿足于就題論題,而是向更深的層次去探究題目的內在規(guī)律.這樣不僅可以培養(yǎng)創(chuàng)造思維能力,而且可以免受題海之困擾,從而大大提高學習效率.例1如圖
2025-06-24 00:28
【摘要】魯能師傅想在一塊三角形的白鐵皮上裁下一個圓,做成一個水桶的底,問怎樣裁這個圓面積最大?ABC魯能師傅想在一塊三角形的白鐵皮上裁下一個圓,做成一個水桶的底,問怎樣裁這個圓面積最大?ABC魯能師傅想在一塊三角形的白鐵皮上裁下一個圓,做成一個水桶的底,問怎樣裁這個圓面積最大?ABC魯能師傅想在一塊三角形的白
2025-11-18 23:38
【摘要】BCA]MNOBCAMNO三角形的內切圓教學目標:1、通過作圖操作,經(jīng)歷三角形內切圓的產(chǎn)生過程;2、通過作圖和探索,體驗并理解三角形內切圓的性質;3、類比三角形內切圓與三角形外接圓,進一步理解三角形內心和外心所具有的性質;4、通過引例和例1的教學,培養(yǎng)學生解決實際問題的能力和應用數(shù)學的意
2025-11-19 12:53
【摘要】1、確定一個圓的位置與大小的條件是什么?①圓心與半徑2、敘述角平分線的性質與判定性質:角平分線上的點到這個角的兩邊的距離相等.判定:到這個角的兩邊距離相等的點在這個角的平分線上.3、下圖中△ABC與圓O的關系?△ABC是圓O的內接三角形;圓O是△ABC的外接圓圓心O點叫△ABC的外心或②不在同一直線
2025-11-29 03:00
【摘要】蘇科九下《》同步練習一選擇題1、如圖,已知正方形ABCD的邊長為2,如果將線段BD繞著點B旋轉后,點D落在CB的延長線上的D′處,那么tan∠BAD′等于()(A).1(B).2(C).22(D).222、如果?是銳角,且54cos??,那么?sin的值是().
2025-11-10 18:35
2025-11-28 23:43
【摘要】如圖是一塊三角形木料,木工師傅要從中裁下一塊圓形用料,怎樣才能使裁下的圓的面積盡可能大呢?ABC·O,在圓O上任取一點A,過點A畫圓O的切線PO2、如圖,D、E、F在圓O上,分別過點D、E、F作圓O的切線。3條切線兩兩相交于點A、B、C·ODEF.
【摘要】三角形的內切圓(一)提出問題如圖,你能否在△ABC中畫出一個圓?畫出一個最大的圓?想一想,怎樣畫?ABC例1作圓,使它和已知三角形的各邊都相切.ABCIMND(1)作圓的關鍵是什么?提出以下幾個問題進行討論:(2)假設⊙I是所求作的圓,
2025-11-28 13:04
【摘要】三角形的內切圓教學目的:1.使學生掌握三角形的內切圓的作法.2.使學生掌握三角形內心的定義和性質.教學的重點和難點:三角形的內切圓的作法和三角形的內心的應用即是重點,又是難點.教學過程:一、復習與提問(學生回答)角的平分線的性質定理和判定定理二、講授新課1.
2025-11-28 23:37
【摘要】第七章圓第九節(jié)三角形的內切圓(一)提出問題如圖,你能否在△ABC中畫出一個圓?畫出一個最大的圓?想一想,怎樣畫?ABC例1作圓,使它和已知三角形的各邊都相切.ABCIMND(1)作圓的關鍵是什么?提出以下幾個問題進行討論:(2)
2025-11-09 15:50
【摘要】確定圓的條件是什么?角平分線的定義、性質和判定都是什么?由于不共線三點確定一個圓,因此每一個三角形都有且只有一個外接圓,圓心是三邊垂直平分線的交點,叫做三角形的外心.外心到三角形三個頂點的距離相等。三角形的外心可能在三角形內(銳角三角形),可能在三角形的一邊上(直角三角形的外心是斜邊的中點),可能在三角形外面(鈍角三角形).
2025-11-08 00:21
【摘要】提出問題:從一塊三角形的材料上截下一塊圓形的用料,怎樣才能使圓的面積盡可能最大呢?作圓:使它和已知三角形的各邊都相切已知:△ABC求作:和△ABC的各邊都相切的圓ABCOMNDO就是所求的圓。作法:1、作∠B,∠C的平分線BM和CN,交點為O2、過點O作OD