【摘要】第一篇:高中立體幾何證明方法 高中立體幾何 一、平行與垂直關(guān)系的論證 由判定定理和性質(zhì)定理構(gòu)成一套完整的定理體系,在應(yīng)用中:低一級位置關(guān)系判定高一級位置關(guān)系;高一級位置關(guān)系推出低一級位置關(guān)系,前...
2025-10-19 20:01
【摘要】立體幾何專題1.如圖4,在邊長為1的等邊三角形中,分別是邊上的點,,是的中點,與交于點,將沿折起,得到如圖5所示的三棱錐,其中.(1)證明://平面;(2)證明:平面;(3)當(dāng)時,求三棱錐的體積.【解析】(1)在等邊三角形中,,在折疊后的三棱錐中也成立,,平面,平面,平面;(2)在等邊三角形中,是的中點,所以①,.在
2025-05-03 00:35
【摘要】第一篇:幾何證明題訓(xùn)練 仁家教育---您可以相信的品牌! 仁家教育教案 百川東到海,何時復(fù)西歸? 少壯不努力,老大徒傷悲。 您的理解與支持是我們前進(jìn)最大的動力!1 您的理解與支持是我們前進(jìn)...
2025-10-12 22:32
【摘要】第一篇:幾何證明題練習(xí) 幾何證明題練習(xí) ,Rt△ABC中AB=AC,點D、E是線段AC上兩動點,且AD=EC,AM⊥BD,垂足為M,AM的延長線交BC于點N,直線BD與直線NE相交于點F。試判斷△...
2025-10-18 12:16
【摘要】幾何證明題如何書寫才算規(guī)范1.語言規(guī)范常見的數(shù)學(xué)語言使用要規(guī)范.如:(1)表示邏輯關(guān)系的因為、所以的簡化符號不能亂寫,因為用“∵”,所以用“∴”;(2)三角形的表示形式要規(guī)范如圖,四邊形ABCD的對角線AC、BD相交于點O
2025-07-26 20:01
【摘要】第一篇:幾何證明題(難) 附加題: 1、已知:如圖,△ABC中,AG⊥BC于點G,以A為直角頂點,分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過點E、F作射線GA的...
2025-10-12 22:37
【摘要】第一篇:幾何證明題大全 幾何證明題 ,BD,CE是邊AC,AB上的中點,BD與CE相交于點O,BO與OD的長度有什么關(guān)系?BC邊上的中線是否一定過點O?為什么? 答題要求:請寫出詳細(xì)的證明過程,...
2025-10-13 00:16
【摘要】中考解答下列各題一、證明題:1、在正方形ABCD中,AC為對角線,E為AC上一點,連接EB、ED并延長分別交AD、AB于F、G(1)求證:EF=EG;(2)當(dāng)∠BED=120°時,求∠EFD的度數(shù).AFDEBC2、已知:如圖,在正方形ABCD中,點E、F分別在BC和CD上,AE=AF.(
2025-03-24 12:13
【摘要】第一篇:高中幾何證明題 高中幾何證明題 如圖,在長方體ABCD-A1B1C1D1中,點E在棱CC1的延長線上,且CC1=C1E=BC=1/2AB=1.(1)求證,D1E//平面ACB1 (2)求...
2025-10-13 22:06
【摘要】幾何證明◆典例精析【例題1】(天津)已知Rt△ABC中,∠ACB=90°,AC=6,BC=8.(1)如圖①,若半徑為r1的⊙O1是Rt△ABC的內(nèi)切圓,求r1;(2)如圖②,若半徑為r2的兩個等圓⊙O1、⊙O2外切,且⊙O1與AC、AB相切,⊙O2與BC、AB相切,求r2;(3)如圖③,當(dāng)n是大于2的正整數(shù)時,若半徑為rn的n個等
2025-03-24 06:14
【摘要】第一篇:立體幾何常見證明方法 立體幾何方法歸納小結(jié) 一、線線平行的證明方法 1、根據(jù)公理4,證明兩直線都與第三條直線平行。 2、根據(jù)線面平行的性質(zhì)定理,若直線a平行于平面A,過a的平面B與平面...
2024-11-15 05:33
【摘要】第一篇:初中幾何證明題 (1)如圖,在三角形ABC中,BD,CE是高,F(xiàn)G分別為ED,BC的中點,O是外心,求證AO∥FG問題補充: 證明:延長AO,交圓O于M,連接BM,則:∠ABM=90°,且...
2025-10-15 21:41
【摘要】第一篇:幾何證明題方法 (初中、高中)幾何證明題一些技巧 初中幾何證明技巧(分類) 證明兩線段相等 。 。 。 。 。 。 。 。*(或等圓)中等弧所對的弦或與圓心等距的兩弦或等...
2025-10-18 15:56
【摘要】立體幾何選填題一、選擇題1.一個幾何體的三視圖如圖所示,則該幾何體的表面積為()A.B.C.D.2.設(shè),是兩個不同的平面,,是兩條不同的直線,且,()A.若,則B.若,則C.若,則D.若,則3.如下圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是
2025-08-05 10:01
【摘要】高三數(shù)學(xué)復(fù)習(xí)——立體幾何中的平行與垂直的證明一、平面的基本性質(zhì)公理1:公理2:推論1:推論2:推論3:公理3:二、空間中直線與直線的位置關(guān)系平行:相交:異面:三、平行問題1.直線與平面平行的判定與性質(zhì)定義判定定理性質(zhì)性質(zhì)定理圖形條件a∥α結(jié)
2025-04-17 13:02