【摘要】高中函數(shù)對稱性總結(jié)新課標高中數(shù)學(xué)教材上就函數(shù)的性質(zhì)著重講解了單調(diào)性、奇偶性、周期性,但在考試測驗甚至高考中不乏對函數(shù)對稱性、連續(xù)性、凹凸性的考查。尤其是對稱性,因為教材上對它有零散的介紹,例如二次函數(shù)的對稱軸,反比例函數(shù)的對稱性,三角函數(shù)的對稱性,因而考查的頻率一直比較高。以筆者的經(jīng)驗看,這方面一直是教學(xué)的難點,尤其是抽象函數(shù)的對稱性判斷。所以這里我對高中階段所涉及的函數(shù)對稱性知
2025-06-16 20:42
【摘要】ABCDO第2課時§圓的對稱性教學(xué)目標1、經(jīng)歷探索圓的對稱性及相關(guān)性質(zhì),2、理解圓的對稱性及相關(guān)性質(zhì)3、進一步體會和理解研究幾何圖形的各種方法教學(xué)重點和難點重點:垂徑定理及其逆定理難點:垂徑定理及其逆定理教學(xué)過程設(shè)計一、從學(xué)生原有的認知結(jié)構(gòu)提出問
2025-11-24 05:24
【摘要】線段、角的對稱性(1)在一張薄紙上畫一條線段AB,操作并思考:線段是軸對稱圖形嗎?做一做BA線段是軸對稱圖形,它的對稱軸在哪里?為什么?想一想BA線段是軸對稱圖形,線段的垂直平分線是它的對稱軸.O21lBA線段、角的對稱性(1)21lPOBA想一想1.
2025-11-15 21:05
【摘要】線段、角的對稱性(3)在一張薄紙上畫∠AOB,操作并思考:它是軸對稱圖形嗎?為什么?做一做AOB?OAB角是軸對稱圖形,它的對稱軸在哪里?為什么?想一想角是軸對稱圖形,角平分線所在的直線是它的對稱軸.OABC線段、角的對稱性(3)想一想如圖,
【摘要】OABC你對角有哪些認識?角是軸對稱圖形,對稱軸是角平線所在的直線.角的軸對稱性O(shè)角是軸對稱圖形,角平線所在的直線是它的對稱軸.PDE性質(zhì):角平分線上的點到角的兩邊的距離相等。OABCEDP∵OC平分∠AOB,點P在OC上,且
2025-01-14 12:05
【摘要】第2課時§圓的對稱性知識目標:經(jīng)歷探索圓的對稱性及相關(guān)性質(zhì);理解圓的對稱性及相關(guān)性質(zhì)進一步體會和理解研究幾何圖形的各種方法德育目標:培養(yǎng)學(xué)生科學(xué)嚴謹?shù)膶W(xué)習(xí)態(tài)度和開拓進取的精神能力目標:培養(yǎng)學(xué)生觀察、分析、探索能力和創(chuàng)造力教學(xué)重點和難點重點:垂徑定理及其逆定理難點:垂徑定理及其逆定理
2025-11-20 12:27
【摘要】2.圓的對稱性(3)圓心角,弧,弦,弦心距之間的關(guān)系●O(1)圓是中心對稱圖形嗎?(2)如果是,它的對稱中心是什么?圓也是中心對稱圖形.它的對稱中心就是圓心.·O圓心角頂點在圓心的角(如∠AOB).圓心角的概念A(yù)B如圖,在⊙O中,分別作相等的圓心角∠AOB和
2025-10-28 14:26
【摘要】線段、角的對稱性(4)例2已知:如圖,△ABC的兩內(nèi)角∠B、∠C的角平分線相交于點P.求證:點P在∠A的角平分線上.2lPDABCFE例3已知:如圖,AD是△ABC的角平分線,DE⊥AB,DF⊥AC,垂足為E、F.求證:AD垂直平分EF.2lAF
【摘要】課時課題:第三章第2節(jié)圓的對稱性(第二課時)課型:新授課授課時間:2013年2月27日星期三第一節(jié)學(xué)習(xí)目標:1.理解圓的旋轉(zhuǎn)不變性;2.利用圓的旋轉(zhuǎn)不變性研究圓心角、弧、弦之間相等關(guān)系的定理.教學(xué)重點與難點:重點:、弧、弦之間相等關(guān)系的定理.“同圓”或“等圓”的前提條件.難點:利用所學(xué)知識解決問題時忽視“同圓”或“等圓”的條件.教法
2025-08-17 05:29
【摘要】圓的對稱性導(dǎo)學(xué)案學(xué)習(xí)目標:1、理解弧、優(yōu)弧、劣弧、圓心角等概念。掌握圓心角、弧、弦之間的關(guān)系定理及應(yīng)用。掌握“垂直于弦的直徑平分這條弦所對的兩條弧”這一結(jié)論。2、通過教學(xué)內(nèi)容向?qū)W生滲透事物相互轉(zhuǎn)化的辯證唯物主義教育,滲透圓的內(nèi)在美,激發(fā)學(xué)生的求知欲。3、經(jīng)歷探索圓的對稱性及相關(guān)性質(zhì)的過程,培養(yǎng)學(xué)生實驗觀察、發(fā)現(xiàn)新問題,探究和解決問題的
2025-11-14 12:22
【摘要】1/3第2課時圓的對稱性課時測評方案基礎(chǔ)練知識點一圓是軸對稱圖形1.選擇。(1)在下面的圖形中,()一定是軸對稱圖形。A.平行四邊形B.梯形C.圓(2)將下面物體的平面圖畫在紙上,()一定是軸對稱圖形。A.茶杯B.籃球
2025-08-10 14:49
【摘要】我們不做宣傳,我們只做口碑!函數(shù)的周期性與對稱性◆函數(shù)的軸對稱定理1:函數(shù)滿足,則函數(shù)的圖象關(guān)于直線對稱.推論1:函數(shù)滿足,則函數(shù)的圖象關(guān)于直線對稱.推論2:函數(shù)滿足,則函數(shù)的圖象關(guān)于直線(y軸)對稱.◆函數(shù)的周期性定理2:函數(shù)對于定義域中的任意,都有,則是以為周期的周期函數(shù);推論1
2025-03-24 12:16
【摘要】函數(shù)的對稱性一、選擇題.如果函數(shù)的圖象關(guān)于點A(1,2)對稱,那么 ( ?。〢.p=-2,n=4 B.p=2,n=-4C.p=-2,n=-4 D.p=2,n=4【答案】A.(山東省實驗中學(xué)2014屆高三上學(xué)期第二次診斷性測試數(shù)學(xué)(理)試題)函數(shù)對任意的圖象關(guān)于點對稱,則 ( )A. B. C. D.0【答案】D.(山東省桓臺第二中學(xué)2014屆
2025-06-20 03:25
【摘要】對稱性破缺是一個跨物理學(xué)、生物學(xué)、社會學(xué)與系統(tǒng)論等學(xué)科的概念,狹義簡單理解為對稱元素的喪失;也可理解為原來具有較高對稱性的系統(tǒng),出現(xiàn)不對稱因素,其對稱程度自發(fā)降低的現(xiàn)象。對稱破缺是事物差異性的方式,任何的對稱都一定存在對稱破缺。對稱性是普遍存在于各個尺度下的系統(tǒng)中,有對稱性的存在,就必然存在對稱性的破缺。對稱性破缺也是量子場論的重要概念,指理論的對稱
2025-01-07 15:19
【摘要】§角的軸對稱性角平分線徐州市政府為了方便居民的生活,計劃在三個住宅小區(qū)A、B、C之間修建一個購物中心,試問,該購物中心應(yīng)建于何處,才能使得它到三個小區(qū)的距離相等。ABC實際問題1問題1:線段是軸對稱圖形嗎?為什么?探索活動:活
2025-07-23 10:31