【摘要】常微分方程第三章測(cè)試卷班級(jí)姓名學(xué)號(hào)得分一、填空題(30分)1,則稱函數(shù)為在R上關(guān)于y滿足利普希茲條件。2,存在唯一性定理中近似值與真正解在區(qū)間內(nèi)的誤差估計(jì)式為3,由解關(guān)于初值的對(duì)稱性
2025-06-26 20:26
【摘要】....常微分方程1.,并求滿足初始條件:x=0,y=1的特解.解:對(duì)原式進(jìn)行變量分離得并求滿足初始條件:x=0,y=1的特解.解:對(duì)原式進(jìn)行變量分離得:3解:原式可化為:12.解15.16.解:
2025-06-24 15:07
【摘要】習(xí)題4—11.求解下列微分方程1)解利用微分法得當(dāng)時(shí),得從而可得原方程的以P為參數(shù)的參數(shù)形式通解或消參數(shù)P,得通解當(dāng)時(shí),則消去P,得特解2);解利用微分法得 當(dāng)時(shí),得從而可得原方程以p為參數(shù)的參數(shù)形式通解:或消p得通解當(dāng)時(shí),消去p得特解3)解利用微分法,得兩
2025-06-18 08:29
2025-06-26 20:30
【摘要】長(zhǎng)春工業(yè)大學(xué)碩士學(xué)位論文分碩士學(xué)位論文基于FPGA的MACRO運(yùn)動(dòng)控制網(wǎng)絡(luò)的研究及實(shí)現(xiàn)ResearchandRealizationofMACROMotionControlNetworkbasedonFPGAIV摘要圖像去噪是圖像處理中一項(xiàng)最基本的課題,在圖像的采集、獲取
2025-06-22 01:10
【摘要】浙江大學(xué)研究生學(xué)位課程《實(shí)用數(shù)值計(jì)算方法》1第六章常微分方程及方程組的解法常微分方程及其求解概述初值問(wèn)題解法邊值問(wèn)題解法浙江大學(xué)研究生學(xué)位課程《實(shí)用數(shù)值計(jì)算方法》2常微分方程及其求解概述初值問(wèn)題解法
2025-08-01 13:19
【摘要】目錄上頁(yè)下頁(yè)返回結(jié)束§非線性方程研究的例子與概念例子基本定義自治微分方程與非自治微分方程、動(dòng)力系統(tǒng)目錄上頁(yè)下頁(yè)返回結(jié)束例早期研究生態(tài)問(wèn)題的一個(gè)簡(jiǎn)單的微分方程模型時(shí)Malthus模型dxrxdt?()
2025-01-20 04:56
【摘要】1.,并求滿足初始條件:x=0,y=1的特解.解:對(duì)原式進(jìn)行變量分離得并求滿足初始條件:x=0,y=1的特解.解:對(duì)原式進(jìn)行變量分離得:3解:原式可化為:12.解15.16.解:,這是齊次方程,令17.解:原方程化為令方程組則有令當(dāng)當(dāng)
2025-06-26 20:53
【摘要】1.=2xy,并滿足初始條件:x=0,y=1的特解。解:=2xdx兩邊積分有:ln|y|=x+cy=e+e=cex另外y=0也是原方程的解,c=0時(shí),y=0原方程的通解為y=cex,x=0y=1時(shí)c=1特解為y=e.2.ydx+(x+1)dy=0并求滿足初始條件:x=0,y=1的特解。解:ydx=-(x+1)dydy=-dx兩邊積分
2025-06-26 20:41
【摘要】西南科技大學(xué)理學(xué)院1第五講全微分方程與積分因子三、積分因子法一、全微分方程與原函數(shù)二、全微分方程判定定理與不定積分法四、小結(jié)西南科技大學(xué)理學(xué)院2定義:即(,)(,)(,)duxyMxydxNxydy??(
2024-10-16 21:13
【摘要】第三章微分方程模型一、微分方程知識(shí)簡(jiǎn)介我們要掌握常微分方程的一些基礎(chǔ)知識(shí),對(duì)一些可以求解的微分方程及其方程組,要求掌握其解法,并了解一些方程的近似解法。微分方程的體系:(1)初等積分法(一階方程及幾類可降階為一階的方程)(2)一階線性微分方程組(常系數(shù)線性微分方程組的解法)(3)高階線性微分方程(高階線性常系數(shù)微分方程解法)。其中還包括了常微分方程的基本定理。
2025-06-24 22:55
【摘要】第三章一階微分方程解的存在定理[教學(xué)目標(biāo)]1.理解解的存在唯一性定理的條件、結(jié)論及證明思路,掌握逐次逼近法,熟練近似解的誤差估計(jì)式。2.了解解的延拓定理及延拓條件。3.理解解對(duì)初值的連續(xù)性、可微性定理的條件和結(jié)論。[教學(xué)重難點(diǎn)]解的存在唯一性定理的證明,解對(duì)初值的連續(xù)性、可微性定理的證明。[教學(xué)方法]講授,實(shí)踐。[教學(xué)時(shí)間]12學(xué)時(shí)[教學(xué)內(nèi)容]
2025-06-29 12:44
【摘要】習(xí)題2-41.求解下列微分方程:(1)yxxyy????22;解:令uxy?,則原方程化為uuudxdux????212,即xdxduuu???122,積分得:cxuuu??????ln1ln2111ln2還原變量并化簡(jiǎn)得:3)()(yxcxy???(2)
2025-01-10 04:03
【摘要】常微分方程(第三版)王高雄著課后習(xí)題答案1.=2xy,并滿足初始條件:x=0,y=1的特解。解:=2xdx兩邊積分有:ln|y|=x+cy=e+e=cex另外y=0也是原方程的解,c=0時(shí),y=0原方程的通解為y=cex,x=0y=1時(shí)c=1特解為y=e.2.ydx+(x+1)dy=0并求滿足初始條件:x=0,y=1的特解。解:ydx=-(
2025-01-18 00:00
【摘要】微分方程習(xí)題§1基本概念1.驗(yàn)證下列各題所給出的隱函數(shù)是微分方程的解.(1)(2)2..已知曲線族,求它相應(yīng)的微分方程(其中均為常數(shù))(一般方法:對(duì)曲線簇方程求導(dǎo),然后消去常數(shù),方程中常數(shù)個(gè)數(shù)決定求導(dǎo)次
2025-06-24 23:00