freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

谷胱甘肽響應(yīng)的可激活磁共振成像納米探針的制備研究畢業(yè)論文(文件)

 

【正文】 ance Imaging(MRI)T2Contrast Agent[J].Marine Drugs,2012,10(11):24032414.[17] Weinmann H J, Brasch RC, Press W R. Am J Roentgenol, 1984, 142, 6192.[18] 何國(guó)祥,王毅翔. 造影劑藥理學(xué)及臨床應(yīng)用[M],上海:上海科學(xué)技術(shù)出版社,2002.[19] Dawson P,Blomley chelate MR contrast ,1994,49:439.[20] Oudkerk M,Van den Heuvel AG,Wielopolski PA,et lesions:Detection with ferumoxideenhanced T1weighted MR ,1997,203:449.[21] Weissleder MR imaging with iron oxides:Toward consensus and clinical ,1994,193:593.[22] Reimer P,Rummeny EJ,Daldrup HE,et results with Resovist:A phase 2 clinical ,1995,195:489.[23] Newton BB,Jimenez of NSF:new evidence challenging the prevailing theory[J].J Magn Reson Imaging,2009,30(6):12771283.[24] Cheng Z L, Thorek D L, Tsourkas A. Gadoliniumconjugated dendrimer nanoclusters as a tumor targeted T1 magnetic resonance imaging contrast agent [J]. Angew Chem Int Ed, 2010, 49: 346350.[25] Fortin M A, Petoral J R M, Sderlindf, et al. Polyethylene glycolcovered ultrasmall Gd2O3 nanoparticles for positive contrast at T magnetic resonance clinical scanning [J]. Nanotechnology, 2007, 18(39): 395501.[26] Bridot J L, Faure A C, Laurent S, et al. Hybrid gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging [J]. J Am Chem Soc, 2007, 129(16): 50765084.[27] Wmd J,NaikKS,Guthfic JA,“a1.Hep“eIesion detection:tomperlson of MRI after the administration of superparama日aetlo iron oxidewith dual phaseCTbyusing altenmtlvefree response receiver operating charactedsdc analysis[J].Radiology,1999,210(2):45966.[28] Yang H, Zhuang Y M, Hu H, et al. Silicacoated manganese oxide nanoparticles as aplatform for targeted magnetic resonance and fluorescence imaging of cancer cells [J]. Adv Funct Mater, 2010, 2(11): 17331741.[29] Garnett MC, Kallinteri P. Nanomedicines and nanotoxicology: some physiological principles. Occup Med, 2006, 56(5): 307311.[30] BrannonPeppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev, 2004, 56(11): 16491659.[31] Liu G, Gao J, Ai H, et al. Applications and Potential Toxicity of Magnetic Iron Oxide Nanoparticles. Small, 2012: 113.[32] Wang Y J, Hussain S M, Krestin G P. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging [J]. Eur Radiol, 2001, 11(11): 23192331.[33] Lee J H, Huh Y M, Jun Y W, et al. Artificially engineered magnetic nanoparticles for ultra sensitive molecular imaging [J]. Nat Med, 2007, 13(1): 9599.[34] Chen M, Liu J P, Sun S H. One step synthesis of FePt nanoparticles with tunable size[J]. J Am Chem Soc, 2004, 126(27): 83948395.[35] Sun S H, Murray C B, Dieter W, et al. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices [J]. Science, 2000, 287(5460): 19891992.[36] Yang H, Li X J, Zhou H, et al. Monodisperse water soluble FeNi nanoparticles for magnetic resonance imaging [J]. Journal of Alloys and Compounds, 2011, 509(4): 12171221.[37] Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev, 2011, 63(3): 131135.[38] Weinstein JS, Varallyay CG, Dosa E, et al. Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J Cereb Blood Flow Metab, 2010, 3(1): 1535.[39] 張?chǎng)?李鑫鋼,[J].化學(xué)工業(yè)與工程,2006,23(1)::[40] Lauterbur P C. Image formation by induced local interaction: examples employing nuclear magnetic resonance [J]. Nature, 1973, 242: 190191.[41] 邊興艷,尹學(xué)念. MTT比色法及其應(yīng)用[D], 國(guó)外醫(yī)學(xué)臨床生物化學(xué)與檢驗(yàn)學(xué)分冊(cè), 1998.翻譯英文原文SelfConfirming “AND” Logic Nanoparticles for FaultFree MRIAbstract: Achieving high accuracy in the imaging of biological targets is a challenging issue. For MRI, to enhance imaging accuracy, two different imaging modes with specific contrast agents are used。因此,實(shí)驗(yàn)的下一步計(jì)劃是繼續(xù)嘗試合成不同尺寸的Fe3O4納米粒子與PEGGd2O3相連接,并研究它們的性質(zhì)與不同,以確定可激活對(duì)比劑中的Fe3O4納米粒子最佳尺寸。首先配制氫氧化鈉(NaOH)/DEG原液:稱(chēng)取2g NaOH溶于20mL DEG在氮?dú)鈼l件下加熱到120℃、1小時(shí),然后冷卻至70℃并保持此溫度;稱(chēng)取8g PAA(Polyacrylic Acid) FeCl3溶于17mL DEG在氮?dú)鈼l件下加熱到220℃機(jī)械攪拌30分鐘得到透明黃色液體;然后將1mL NaOH/DEG原液加入到透明黃色液體中(通過(guò)加入不同體積的NaOH/DEG原液以達(dá)到制備不同尺寸Fe3O4納米粒子的目的),將溫度降至210℃,溶液慢慢變黑,繼續(xù)在氮?dú)鈼l件下恒溫加熱1小時(shí)。本文僅僅討論了尺寸為的四氧化三鐵納米粒子應(yīng)用于可激活對(duì)比劑的成像效果研究,對(duì)于不同尺寸的四氧化三鐵的研究還處于制備材料階段。5 總結(jié)與展望本文討論了陽(yáng)性對(duì)比劑氧化釓及陰性對(duì)比劑四氧化三鐵的制備及對(duì)其性質(zhì)進(jìn)行了簡(jiǎn)單的研究。 討論本章節(jié)利用MTT法考察了Fe3O4SSGd2O3納米材料的生物相容性。 不同濃度Fe3O4SSGd2O3納米探針與7860作用24h后的細(xì)胞形態(tài),細(xì)胞的形態(tài)并未發(fā)生明顯的改變,當(dāng)Fe3O4SSGd2O3納米探針中[Gd3+],細(xì)胞形態(tài)均未發(fā)生明顯變化,7860腎癌細(xì)胞具有良好的細(xì)胞形態(tài),由此說(shuō)明Fe3O4SSGd2O3納米探針具有良好的生物相容性,可用于腫瘤細(xì)胞的成像診斷研究。7860腎癌細(xì)胞的加材料實(shí)驗(yàn)過(guò)程與NIH 3T3小鼠成纖維細(xì)胞種板相似,此處不再贅述。 MTT測(cè)試之加材料表序號(hào)培養(yǎng)基Fe3O4SSGd2O3材料濃度A1A12100μL0μL0mM [Gd]B1B6 3mM[Gd3+] [Gd]B7B12 3mM[Gd3+] [Gd]C1C6 3mM[Gd3+] [Gd]C7C1295μL5μL 3mM[Gd3+] [Gd]D1D6 3mM[Gd3+] [Gd]D7D1290μL10μL 3mM[Gd3+] [Gd]NIH 3T3小鼠成纖維細(xì)胞板加材料的實(shí)驗(yàn)步驟為:(1)[Gd3+],3mM[Gd3+]:首先準(zhǔn)備PEGGd2O3SSNH2:,在37℃電熱恒溫水槽(DK8D)中孵育15min,之后加入與EDC等量的NHS和100μL胱胺,繼續(xù)孵育2小時(shí)。以下各項(xiàng)操作均在無(wú)菌細(xì)胞室進(jìn)行。(3)加入適量的培養(yǎng)液, mL2 mL。 7860腎癌細(xì)胞傳代(1)倒置顯微鏡下觀察細(xì)胞,當(dāng)細(xì)胞處于80%90%匯合階段時(shí)進(jìn)行傳代培養(yǎng);(2)倒去培養(yǎng)瓶中的培養(yǎng)液,用5—10mL無(wú)菌PBS水洗滌1—2次,然后想瓶?jī)?nèi)加入500μL %的胰蛋白酶消解細(xì)胞;(3)室溫下放置13 min,倒置顯微鏡下觀察培養(yǎng)瓶,當(dāng)細(xì)胞質(zhì)回縮至細(xì)胞形態(tài)近圓形時(shí),倒去胰蛋白酶,立即加入5—10mL培養(yǎng)基終止消解,輕輕吹打瓶壁細(xì)胞,使之從培養(yǎng)瓶中脫離,形成細(xì)胞懸液;(4)將細(xì)胞懸液轉(zhuǎn)移到10mL的離心管中,2000轉(zhuǎn)離心10min;(5)倒掉上清液,加入1mL培養(yǎng)基使細(xì)胞分散均勻,分裝入數(shù)個(gè)培養(yǎng)瓶中,一般1: 3傳代,但是本實(shí)驗(yàn)由于時(shí)間有限,為了讓細(xì)胞快速生長(zhǎng),進(jìn)行1:2傳代。(4)加入1/10體積的DMSO,混合均勻。 NIH 3T3小鼠成纖維細(xì)胞計(jì)數(shù)(1)%胰蛋白酶將貼壁的細(xì)胞消化下來(lái),使之形成細(xì)胞懸液;(2)取計(jì)數(shù)用載玻片,蓋上蓋玻片,吸取少量細(xì)胞懸液滴到載玻片上,使載玻片與蓋玻片之間充滿(mǎn)細(xì)胞懸液;(3)倒置顯微鏡下計(jì)數(shù)載玻片上4個(gè)角的大計(jì)數(shù)格內(nèi)的細(xì)胞總數(shù)。 NIH 3T3小鼠成纖維細(xì)胞培養(yǎng)以下各項(xiàng)操作均在無(wú)菌細(xì)胞室進(jìn)行,NIH 3T3細(xì)胞培養(yǎng)條件為:含10%胎牛血清(FBS)的RPMI1640培養(yǎng)基、37 ℃ 5% CO2培養(yǎng)箱。由于結(jié)晶物形成的量與細(xì)胞數(shù)量及代謝活性成比例,因此吸光度值的大小可反應(yīng)細(xì)胞的數(shù)量及活性。自從1983年美國(guó)學(xué)者M(jìn)osmamn建立了MTT比色法以來(lái),以其快速、靈敏、簡(jiǎn)便、準(zhǔn)確等優(yōu)點(diǎn)受到人們的普遍重視,現(xiàn)已廣泛應(yīng)用于各個(gè)領(lǐng)域,例如檢測(cè)細(xì)胞對(duì)化學(xué)藥物的敏感性,刺激劑對(duì)免疫細(xì)胞的反應(yīng)、免疫細(xì)胞毒性、細(xì)胞因子活性等[41]。 討論本章節(jié)首先通過(guò)控制單一變量的方法對(duì)制備的可激活磁共振對(duì)比劑Fe3O4SSGd2O
點(diǎn)擊復(fù)制文檔內(nèi)容
數(shù)學(xué)相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1