freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

專題十:參數(shù)的取值問題的題型及方法(文件)

 

【正文】 計(jì)如下解題思路:把直線l’的方程代入雙曲線方程,消去y,令判別式 直線l’在l的上方且到直線l的距離為 解題過程略.分析2:如果從代數(shù)推理的角度去思考,就應(yīng)當(dāng)把距離用代數(shù)式表達(dá),即所謂“有且僅有一點(diǎn)B到直線的距離為”,相當(dāng)于化歸的方程有唯一解. 據(jù)此設(shè)計(jì)出如下解題思路:轉(zhuǎn)化為一元二次方程根的問題求解問題關(guān)于x的方程 有唯一解解:設(shè)點(diǎn)為雙曲線C上支上任一點(diǎn),則點(diǎn)M到直線的距離為: 于是,問題即可轉(zhuǎn)化為如上關(guān)于的方程.由于,所以,從而有于是關(guān)于的方程, , 由可知: 方程的二根同正,故恒成立,于是等價(jià)于. 由如上關(guān)于的方程有唯一解,得其判別式,就可解得 .說(shuō)明:上述解法緊扣解題目標(biāo),不斷進(jìn)行問題轉(zhuǎn)換,充分體現(xiàn)了全局觀念與整體思維的優(yōu)越性.3.分析與解:從不等式分析入手,易知首先需要判斷的奇偶性和單調(diào)性,不難證明,在R上是奇函數(shù)和增函數(shù),由此解出.令,命題轉(zhuǎn)化為不等式,(*)恒成立時(shí),求實(shí)數(shù)的取值范圍。為此,我們有必要總結(jié)和歸納如何尋找或挖掘不等量關(guān)系的策略和方法.在幾何問題中,有些問題和參數(shù)無(wú)關(guān),這就構(gòu)成定值問題,解決這些問題常通過取參數(shù)和特殊值來(lái)確定“定值”是多少,或者將該問題涉及的幾何式轉(zhuǎn)化為代數(shù)式或三角式來(lái)證明該式是恒定的.解析幾何中的最值問題,一般先根據(jù)條件列出所求目標(biāo)——函數(shù)關(guān)系式,然后根據(jù)函數(shù)關(guān)系式手特征選用參數(shù)法,配方法,判別式法,應(yīng)用不等式的性質(zhì),以及三角函數(shù)最值法等求出它的最大值或最小值.充分運(yùn)用各種方法學(xué)會(huì)解圓錐曲線的綜合問題(解析法的應(yīng)用,數(shù)形結(jié)合的數(shù)學(xué)思想,圓錐曲線與圓錐曲線的位置關(guān)系,與圓錐曲線相關(guān)的定值問題,最值問題,應(yīng)用問題和探索性問題).研究最值問題是實(shí)踐的需要,人類在實(shí)踐活動(dòng)中往往追求最佳結(jié)果,抽象化之成為數(shù)學(xué)上的最值問題,所以最值問題幾乎滲透到數(shù)學(xué)的每一章.解析幾何中的最值問題主要是曲線上的點(diǎn)到定點(diǎn)的距離最值,到定直線的距離最值,還有面積最值,斜率最值等,解決的辦法也往往是數(shù)形結(jié)合或轉(zhuǎn)化為函數(shù)最值.而一些函數(shù)最值,反而可以通過數(shù)形結(jié)合轉(zhuǎn)化為解析幾何中的最值問題.1.幾何法:若題目的條件和結(jié)論能明顯體現(xiàn)幾何特征及意義,則考慮利用圖形性質(zhì)來(lái)解決。分析:題目中要證明恒成立,若把移到等號(hào)的左邊,則把原題轉(zhuǎn)化成左邊二次函數(shù)在區(qū)間時(shí)恒大于0的問題.解:設(shè).ⅰ)當(dāng)時(shí),即時(shí),對(duì)一切,恒成立;1oxyⅱ)當(dāng)時(shí)由圖可得以下充要條件:即得綜合可得的取值范圍為.說(shuō)明:若二次函數(shù)大于0恒成立,則有,若是二次函數(shù)在指定區(qū)間上的恒成立問題,還可以利用韋達(dá)定理以及根與系數(shù)的分布知識(shí)求解.4
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1