【摘要】第一章行列式1.利用對角線法則計(jì)算下列三階行列式:(1);解=2′(-4)′3+0′(-1)′(-1)+1′1′8-0′1′3-2′(-1)′8-1′(-4)′(-1)
2025-06-28 21:04
【摘要】第一章行列式1.證明:(1)首先證明是數(shù)域。因?yàn)?,所以中至少含有兩個(gè)復(fù)數(shù)。任給兩個(gè)復(fù)數(shù),我們有。因?yàn)槭菙?shù)域,所以有理數(shù)的和、差、積仍然為有理數(shù),所以。如果,則必有不同時(shí)為零,從而。又因?yàn)橛欣頂?shù)的和、差、積、商仍為有理數(shù),所以。綜上所述,我們有是數(shù)域。(2)類似可證明是數(shù)域,這兒是一個(gè)素?cái)?shù)。(3)下面證明:若為互異素?cái)?shù),則。(
2025-06-28 20:38
【摘要】線性代數(shù)同濟(jì)大學(xué)第四版課后答案習(xí)題一(1)(2)(3)(4)(1)(2)(3)(4)(5)(6)(1)(2)(3)(4)
2025-01-09 10:39
【摘要】....線性代數(shù)同濟(jì)大學(xué)第四版課后答案習(xí)題一(1)(2)(3)(4)(1)(2)(3)(4)(5)(6)(1)(2)(3)(4)
2025-06-28 20:45
2025-01-09 10:36
【摘要】線性代數(shù)同濟(jì)大學(xué)第四版課后答案習(xí)題一(1)(2)(3)(4)(1)(2)(3)(4)(5)(6)(1)(2)(3)(4)習(xí)
2025-06-28 21:49
【摘要】利用范德蒙行列式計(jì)算例計(jì)算利用范德蒙行列式計(jì)算行列式,應(yīng)根據(jù)范德蒙行列式的特點(diǎn),將所給行列式化為范德蒙行列式,然后根據(jù)范德蒙行列式計(jì)算出結(jié)果。.333222111222nnnDnnnn?????????,于是得到增至冪次數(shù)便從則方若提取各行的公因子,遞升至而是由
2025-05-01 22:18
2025-06-07 21:36
【摘要】1第一章行列式:(1)381141102???;(2)bacacbcba(3)222111cbacba;(4)yxyxxyxyyxyx???.解(1)????381141102
2025-01-09 10:35
2025-06-28 21:50
【摘要】《線性代數(shù)》習(xí)題答案習(xí)題一一、填空題1、82、1或-23、?????????????????????600012600166203212134、1?5、0??6、2121?
2025-08-26 21:16
【摘要】一,矩陣的初等變換與線性方程組1.矩陣的初等變換一.Gauss滴元法Gramer法則僅適合方形的線性方程組,對于一般的m個(gè)方程n個(gè)未知量的線性方程組,可用Gauss消元法求解。求解???????????????????????979634226442224321
2024-10-27 10:19
2025-07-25 18:04
【摘要】第一篇:線性代數(shù)習(xí)題答案 習(xí)題三(A類) =(1,1,0),α2=(0,1,1),α3=(3,4,0).求α1-α2及3α1+:α1-α2=(1,1,0)-(0,1,1)=(1,0,-1),3α1...
2024-11-09 22:39
【摘要】第一篇:線性代數(shù)習(xí)題答案 、=2,s=5,t=8或r=5,s=8,t=2或r=8,s=2,t==2,j=;a13a25a32a44a51;;當(dāng)k為偶數(shù)時(shí),排列為偶排列,當(dāng)k為奇數(shù)時(shí),(1)1;(2)...
2024-11-09 12:06