【摘要】第一篇:幾何證明題方法 (初中、高中)幾何證明題一些技巧 初中幾何證明技巧(分類) 證明兩線段相等 。 。 。 。 。 。 。 。*(或等圓)中等弧所對(duì)的弦或與圓心等距的兩弦或等...
2024-10-27 15:56
【摘要】初二上證明題0011.如圖,DE∥BC,∠D+∠B=180°.求證:AB∥CD.2.如圖,AB∥CD,GH分別與AB、CD相交于點(diǎn)E、F,EM平分∠AEG,F(xiàn)N平分∠CFG.求證:EM∥FN.3.如圖,OB=BC,OC平分∠AOB.求證:AO∥BC.4.B如圖,AB∥CD,∠A+∠E=∠AM
2025-03-24 12:38
【摘要】空間幾何證明A1ED1C1B1DCBA1、如圖,在正方體中,是的中點(diǎn),求證:平面。2、已知中,面,,求證:面.3、正方體中,求證:(1);4、正方體ABCD—A1B1C1D1中.(1)求證
2025-03-25 06:42
【摘要】必修二立體幾何經(jīng)典證明試題1.如圖,三棱柱ABC-A1B1C1中,側(cè)棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中點(diǎn)(I)證明:平面BDC1⊥平面BDC(Ⅱ)平面BDC1分此棱柱為兩部分,求這兩部分體積的比.CBADC1A11.【解析】(Ⅰ)由題設(shè)知BC⊥,BC⊥AC,,∴面,又∵面,∴,由題設(shè)知,∴=,即
2025-03-25 02:03
【摘要】第一篇:廣西南寧歷年中考數(shù)學(xué)簡(jiǎn)單幾何證明題 2006年 23.將圖8(1)中的矩形ABCD沿對(duì)角線AC剪開,再把△ABC沿著AD方向平移,得到圖8(2)中的△A¢BC¢,除△ADC與△C¢BA¢全...
2024-10-28 00:55
【摘要】新課標(biāo)立體幾何??甲C明題匯總1、已知四邊形是空間四邊形,分別是邊的中點(diǎn)(1)求證:EFGH是平行四邊形AHGFEDCB(2)若BD=,AC=2,EG=2。求異面直線AC、BD所成的角和EG、BD所成的角。證明:在中,∵分別是的中點(diǎn)∴同理,∴∴四邊形是平行四邊形。(2)90°30°
2025-03-25 06:44
【摘要】第一篇:初二幾何證明題 1如圖,在△ABC中,D是BC邊上的一點(diǎn),E是AD的中點(diǎn),過(guò)點(diǎn)A作BC的平行線交BE的延長(zhǎng)線于F,且AF=DCCF.(1)求證:D是BC的中點(diǎn);(2)如果AB=ACADCF的...
2024-10-21 22:41
【摘要】第一篇:初一幾何證明題 三角形 1、已知ΔABC,AD是BC邊上的中線。E在AB邊上,ED平分∠ADB。F在AC邊上,F(xiàn)D平分∠ADC。求證:BE+CF>EF。 1、已知ΔABC,BD是AC邊上...
2024-10-24 20:15
【摘要】第一篇:幾何證明題專題講解 幾何證明題專題講解 【知識(shí)精讀】 ,它對(duì)培養(yǎng)學(xué)生邏輯思維能力有著很大作用。幾何證明有兩種基本類型:一是平面圖形的數(shù)量關(guān)系;二是有關(guān)平面圖形的位置關(guān)系。這兩類問題常???..
2024-10-27 19:29
【摘要】第一篇:2012中考幾何證明題集訓(xùn)(大全) 2012中考幾何證明題集訓(xùn) 1、如圖,AB是⊙O的直徑,CB是弦,OD⊥CB于E,(1)請(qǐng)寫出兩個(gè)不同類型的正確結(jié)論; (2)若CB=8,ED=2,求...
2024-10-27 06:14
【摘要】第一篇:初一幾何證明題 初一《幾何》復(fù)習(xí)題2002--6—29姓名:一.填空題 1.過(guò)一點(diǎn) 2.過(guò)一點(diǎn),有且只有直線與這條直線平行; 3.兩條直線相交的,它們的交點(diǎn)叫做;4.直線外一點(diǎn)與直線上...
2024-10-24 21:17
【摘要】簡(jiǎn)單的幾何證明題簡(jiǎn)單的幾何證明題基本上每年都有,一般會(huì)以四邊形或組合的三角形為基礎(chǔ),利用三角形全等和相似的知識(shí)證明和計(jì)算。近兩年第一小題一般為證明題,第二小題一般為計(jì)算題。這類題相對(duì)簡(jiǎn)單,必須拿分。:,如對(duì)頂角相等、公共角、公共邊、三角形性質(zhì)、平行四邊形和特殊平行四邊形的性質(zhì)等。幾何圖形性質(zhì)等腰三角形兩腰相等;等邊對(duì)等角(即“等腰三角形的兩個(gè)底角相等”);
2025-03-24 06:15
【摘要】第一篇:初一幾何證明題 初一幾何證明題 一、1)D是三角形ABC的BC邊上的點(diǎn)且CD=AB,角ADB=角BAD,AE是三角形ABD的中線,求證AC=2AE。 (2)在直角三角形ABC中,角C=9...
2024-10-29 02:17
【摘要】做幾何證明題方法歸納做幾何證明題方法歸納知識(shí)歸納:1.幾何證明是平面幾何中的一個(gè)重要問題,它對(duì)培養(yǎng)學(xué)生邏輯思維能力有著很大作用。幾何證明有兩種基本類型:一是平面圖形的數(shù)量關(guān)系;二是有關(guān)平面圖形的位置關(guān)系。這兩類問題常常可以相互轉(zhuǎn)化,如證明平行關(guān)系可轉(zhuǎn)化為證明角等或角互補(bǔ)的問題。2.掌握分析、證明幾何問題的常用方法:(1)綜合法(由因?qū)Ч?,從已知條件出發(fā),
2025-03-24 07:18
【摘要】中考專題訓(xùn)練1、如圖,在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2.(1)求證:DC=BC;(2)E是梯形內(nèi)一點(diǎn),F(xiàn)是梯形外一點(diǎn),且∠EDC=∠FBC,DE=BF,試判斷△ECF的形狀,并證明你的結(jié)論;(3)在(2)的條件下,當(dāng)BE:CE=1:2,∠BEC=135°時(shí),求sin∠BFE的值.
2025-04-04 03:01