【總結(jié)】勾股定理的應(yīng)用欲登12米高的建筑物,為安全需要,需使梯子底端離建筑物5米,至少需多長(zhǎng)的梯子?復(fù)習(xí)回顧分析:根據(jù)題意,(如圖)AC是建筑物,則AC=12米,BC=5米,AB是梯子的長(zhǎng)度.解:根據(jù)題意,(如圖)AC是建筑物,則AC=12米,BC=5米,AB是梯子的長(zhǎng)度.所以在Rt△ABC中,
2024-12-07 22:12
【總結(jié)】第一章勾股定理3勾股定理的應(yīng)用2022秋季數(shù)學(xué)八年級(jí)上冊(cè)?B立體圖形表面兩點(diǎn)之間的最短距離求立體圖形表面兩點(diǎn)之間的最短距離問(wèn)題.解決此類(lèi)問(wèn)題的依據(jù)是:兩點(diǎn)之間,最短.為此需先將立體圖形的表面展開(kāi),將立體圖形轉(zhuǎn)化為圖形;再作兩點(diǎn)之間的,構(gòu)造直角三角形;最后通過(guò)
2025-06-20 12:13
2025-06-18 12:27
【總結(jié)】第一章勾股定理探索勾股定理第2課時(shí)勾股定理的驗(yàn)證及簡(jiǎn)單應(yīng)用◎新知梳理1.勾股定理的驗(yàn)證:如圖甲是任意一個(gè)Rt△ABC,它的兩條直角邊的邊長(zhǎng)分別為a,b,斜邊長(zhǎng)為c.如圖乙、丙那樣分別取四個(gè)與Rt△ABC全等的三角形,放在邊長(zhǎng)為(a+b)的正方形內(nèi).(1)圖乙和圖丙中①
2025-06-19 22:21
【總結(jié)】探索勾股定理(第1課時(shí))一、情境引入會(huì)標(biāo)中央的圖案是趙爽弦圖,它與“勾股定理”有關(guān),數(shù)學(xué)家曾建議用“勾股定理”的圖來(lái)作為與“外星人”聯(lián)系的信號(hào).2020年世界數(shù)學(xué)家大會(huì)在我國(guó)北京召開(kāi),下圖是本屆數(shù)學(xué)家大會(huì)的會(huì)標(biāo):探究活動(dòng)一:觀察下面地板磚示意圖:二、探索發(fā)現(xiàn)勾股定理
2024-11-09 21:04
【總結(jié)】北師大八年級(jí)上冊(cè)第一章第一節(jié)123相傳兩千多年前,一次畢達(dá)哥拉斯去朋友家作客,發(fā)現(xiàn)朋友家用磚鋪成的地面反映直角三角形三邊的某種數(shù)量關(guān)系,同學(xué)
2024-11-30 08:16
【總結(jié)】勾股定理abc勾股弦畢達(dá)哥拉斯在國(guó)外,相傳勾股定理是公元前500多年時(shí)古希臘數(shù)學(xué)家畢達(dá)哥拉斯首先發(fā)現(xiàn)的。因此又稱此定理為“畢達(dá)哥拉斯定理”。法國(guó)和比利時(shí)稱它為“驢橋定理”,埃及稱它為“埃及三角形”等。但他們發(fā)現(xiàn)的時(shí)間都比我國(guó)要遲得多。商高是公元前十一世
2024-12-23 13:49
【總結(jié)】東園中學(xué)206班執(zhí)教者:陳朝財(cái)中國(guó)最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開(kāi)頭,記載著一段周公向商高請(qǐng)教數(shù)學(xué)知識(shí)的對(duì)話:周公問(wèn):“我聽(tīng)說(shuō)您對(duì)數(shù)學(xué)非常精通,我想請(qǐng)教一下:天沒(méi)有梯子可以上去,地也沒(méi)法用尺子去一段一段丈量,那么怎樣才能得到關(guān)于天地的數(shù)據(jù)呢?”商高回答說(shuō):“數(shù)的產(chǎn)生來(lái)源于對(duì)方和圓這些形體的認(rèn)識(shí)。其中有一條原理:
2024-11-30 08:01
【總結(jié)】第一章勾股定理3勾股定理的應(yīng)用3勾股定理的應(yīng)用第一章勾股定理A知識(shí)要點(diǎn)分類(lèi)練B規(guī)律方法綜合練C拓廣探究創(chuàng)新練1.如圖1-3-1,一只螞蟻從一個(gè)正方體紙盒的點(diǎn)A沿紙盒表面爬到點(diǎn)B,它所爬過(guò)的最短路線的痕跡(虛線)在側(cè)面展開(kāi)圖中的位置是()
2025-06-20 12:52
2025-06-19 22:19
【總結(jié)】第1章勾股定理(時(shí)間:120分鐘滿分:120分)一、選擇題(每小題3分,共30分)1.將直角三角形的三邊長(zhǎng)同時(shí)擴(kuò)大2倍,得到的三角形是(C)A.鈍角三角形B.銳角三角形C.直角三角形D.等腰三角形2.如果梯子的底端離建筑物5米,那么13米長(zhǎng)的梯子可以達(dá)到建筑物的高度是(
2024-11-28 01:28
【總結(jié)】初中數(shù)學(xué)(北師大版)八年級(jí)上冊(cè)第一章勾股定理知識(shí)點(diǎn)一圓柱側(cè)面上兩點(diǎn)間的最短距離圓柱側(cè)面的展開(kāi)圖是一個(gè)長(zhǎng)方形.圓柱側(cè)面上兩點(diǎn)之間最短距離的求法是把圓柱側(cè)面展開(kāi)成平面圖形,依據(jù)兩點(diǎn)之間線段最短,以最短路線為斜邊構(gòu)造直角三角形,利用勾股定理求解.3勾股定理的應(yīng)用例1如圖1-3-1所示,一個(gè)圓
2025-06-20 13:04
【總結(jié)】3勾股定理的應(yīng)用,構(gòu)造三角形,碰到空間曲面上兩點(diǎn)間的最短距離問(wèn)題,一般是化空間問(wèn)題為問(wèn)題來(lái)解決,它的理論依據(jù)是“兩點(diǎn)之間,最短”.,在圓柱的軸截面ABCD中,AB=,BC=12,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿著圓柱的側(cè)面移動(dòng)到BC的中點(diǎn)S的最短距離為()1
2025-06-19 12:21
【總結(jié)】第一章勾股定理專(zhuān)題突破一勾股定理的應(yīng)用2022秋季數(shù)學(xué)八年級(jí)上冊(cè)?B類(lèi)型1利用勾股定理求線段長(zhǎng)1.在△ABC中,AB=AC=5,BC=6.若點(diǎn)P在邊AC上移動(dòng),求BP最小值是多少?解:過(guò)A作AD⊥BC于D,∵AB=AC=5,BC=6
2025-06-19 18:04
2025-06-19 22:14