【總結】a?Ab?BCba???a?a?Ab?Bb?OCba???特點:首尾相接特點:共起點bBaABAab??:O特點:共起點:::向量與非零向量共線當且僅當有唯一一個實數(shù),使得ab
2024-11-18 12:17
【總結】平面向量的基本定理及坐標表示平面向量基本定理平面向量的正交分解及坐標表示2020/12/25研修班2問題提出1.向量加法與減法有哪幾種幾何運算法則?λa?(1)|λa|=|λ||a|;(2)λ0時,λa與a方向相同;λ0時,λa與a方向相反;
【總結】復習:共線向量基本定理:向量與向量共線當且僅當有唯一一個實數(shù)使得(0)aa?b?ab??abbb0??0??已知平行四邊形ABCD中,M,N分別是BC,DC的中點且,用表
2024-11-17 12:03
【總結】Oxya引入:,點A可以用什么來表示??OxyA(a,b)aba:如果e1,e2是同一平面內(nèi)的兩個不共線的向量,那么對于這一平面內(nèi)的任一向量a,有且只有一對實數(shù)λ1,λ2使得a=λ1e1+λ2e2.不共線的兩向量e1,e2叫做這一平面內(nèi)所
2025-06-06 00:43
【總結】第二章平面向量,第一頁,編輯于星期六:點三十三分。,§3從速度的倍數(shù)到數(shù)乘向量3.2平面向量基本定理,第二頁,編輯于星期六:點三十三分。,,自主學習梳理知識,課前基礎梳理,第三頁,編輯于星期六:點三十...
2024-10-22 18:50
【總結】 平面向量共線的坐標表示 兩向量平行的條件 (1)設a=(x1,y1),b=(x2,y2),b≠0,則a∥b?x1y2-x2y1=0. (2)設a=(x1,y1),b=(x2,y...
2025-04-03 02:47
【總結】海鹽高級中學高新軍復習引入:?若e1、e2是同一平面內(nèi)的兩個不共線向量,則對于這一平面內(nèi)的任意向量a,有且只有一對實數(shù)λ1,λ2,使a=λ1e1+λ2e2.?設i、j是與x軸、y軸同向的兩個單位向量,若a=xi+yj,則a=(x,y).我們需要研究的問題是:⑴向量的和、差、數(shù)乘、模的運算
2025-08-05 06:24
【總結】平面向量的正交分解及坐標表示一、三角形三條中線共點的證明圖10如圖10所示,已知在△ABC中,D、E、L分別是BC、CA、AB的中點,設中線AD、BE相交于點P.求證:AD、BE、CL三線共點.分析:欲證三條中線共點,只需證明C、P、L三點共線.解:設AC=a,AB=b,則AL
2024-11-19 17:32
【總結】(二)2.3.2平面向量的坐標運算(二)【學習要求】1.理解用坐標表示的平面向量共線的條件.2.能根據(jù)平面向量的坐標,判斷向量是否共線.3.掌握三點共線的判斷方法.【學法指導】1.應用平面向量共線條件的坐標表示來解決向量的共線問題優(yōu)點在于不需要引入?yún)?shù)“λ”,從而減少了未知數(shù)的個數(shù),而且使問題具有代
2025-01-13 20:56
【總結】平面向量應用舉例平面幾何中的向量方法問題提出t57301p2???????,使得向量可以進行線性運算和數(shù)量積運算,并具有鮮明的幾何背景,從而溝通了平面向量與平面幾何的內(nèi)在聯(lián)系,在某種條件下,平面向量與平面幾何可以相互轉化.、垂直、夾角、距離、全等、相似等,是平面幾何中常見的問題,而這些問題都可以由
【總結】OxyijaA(x,y)a兩者相同3.兩個向量相等的充要條件,利用坐標如何表示?坐標(x,y)一一對應向量a1.以原點O為起點作OA=a,點A的位置由誰確定?2.點A的坐標與向量a的坐標有什么關系?由a唯一確定a=bx1=x2且y1=y2
2025-08-05 06:17
【總結】課題平面向量數(shù)量積的坐標表示、模、夾角教學目標知識與技能理解兩個向量數(shù)量積坐標表示的推導過程,過程與方法能根據(jù)向量的坐標計算向量的模,情感態(tài)度價值觀并推導平面內(nèi)兩點間的距離公式重點能根據(jù)向量的坐標求向量的夾角及判定兩個向量垂直難點能運用數(shù)量積的坐標表示進行向量數(shù)量積的運算.
2024-12-05 06:47
【總結】§4平面向量的坐標4.1平面向量的坐標表示4.2平面向量線性運算的坐標表示4.3向量平行的坐標表示,)1.問題導航(1)相等向量的坐標相同嗎?相等向量的起點、終點的坐標一定相同嗎?(2)求向量AB→的坐標需要知道哪些量?(3)兩個向量a=(x1,y
2024-11-28 00:13
2024-11-17 15:05
【總結】第二章平面向量,第一頁,編輯于星期六:點三十三分。,§2從位移的合成到向量的加法2.1向量的加法,第二頁,編輯于星期六:點三十三分。,,自主學習梳理知識,課前基礎梳理,第三頁,編輯于星期六:點三十三分...
2024-10-22 18:49