【總結(jié)】§平面向量數(shù)量積的運(yùn)算律(課前預(yù)習(xí)案)班級(jí):___姓名:________編寫:一、新知導(dǎo)學(xué)1.交換律:a?b=;2.?dāng)?shù)乘結(jié)合律:(?a)?b==;3.分配律:(a+b)?c=.說(shuō)明
2024-11-27 23:43
【總結(jié)】向量數(shù)量積的坐標(biāo)運(yùn)算與度量公式一、學(xué)習(xí)要點(diǎn):向量數(shù)量積的坐標(biāo)運(yùn)算與度量公式及其簡(jiǎn)單運(yùn)用二、學(xué)習(xí)過(guò)程:一.復(fù)習(xí)回顧:平面向量數(shù)量積的性質(zhì)及運(yùn)算律.二.新課學(xué)習(xí)::兩個(gè)向量的數(shù)量積等于它們對(duì)應(yīng)坐標(biāo)的乘積的和,即:a=1,1()xy,b=2,2()xy則a?b=
2025-11-09 16:44
【總結(jié)】2020年高中數(shù)學(xué)冪函數(shù)學(xué)案新人教B版必修1一、三維目標(biāo):1.理解冪函數(shù)的概念,會(huì)畫函數(shù)xy?,2xy?,3xy?,1??xy,21xy?的圖象.2.了解冪函數(shù)的圖象,理解冪函數(shù)圖象的變化情況和性質(zhì),并能進(jìn)行簡(jiǎn)單的應(yīng)用.3.滲透辨證唯物主義觀點(diǎn)和方法論,培養(yǎng)學(xué)生運(yùn)用具體問(wèn)題具體分析的方法分析問(wèn)題、
2025-11-10 23:24
【總結(jié)】撰稿教師:李麗麗學(xué)習(xí)目標(biāo)1、理解平面向量的正交分解。聯(lián)系直角坐標(biāo)系,研究向量正交分解的坐標(biāo)運(yùn)算。2、會(huì)用坐標(biāo)表示平面向量的加法、減與數(shù)乘運(yùn)算。學(xué)習(xí)過(guò)程一、課前準(zhǔn)備(預(yù)習(xí)教材99頁(yè)~102頁(yè),找出疑惑之處)二、新課導(dǎo)學(xué)(一)向量的正交分解1、如果兩個(gè)向量的基線互相垂直,則稱這兩個(gè)向量,
【總結(jié)】空間向量的數(shù)乘運(yùn)算【使用說(shuō)明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動(dòng)手實(shí)踐。【學(xué)習(xí)目標(biāo)】1.掌握空間向量的數(shù)乘運(yùn)算律,能進(jìn)行簡(jiǎn)單的代數(shù)式化簡(jiǎn);2.理解共線向量定理和共面向量定理及它們的推論;3.能用空間向量的運(yùn)算意義及運(yùn)算律解決簡(jiǎn)單的立體幾何中的問(wèn)題.【重點(diǎn)】能用空間向量的運(yùn)算意義
2025-11-09 16:52
【總結(jié)】三視圖自主學(xué)習(xí)學(xué)習(xí)目標(biāo)了解正投影的概念,理解三視圖的原理和視圖間的相互關(guān)系,能畫出簡(jiǎn)單空間圖形(長(zhǎng)方體、球、圓柱、圓錐、棱柱等的簡(jiǎn)單組合)的三視圖,會(huì)畫某些建筑物或零件的直觀圖和三視圖,能識(shí)別三視圖所表示的立體模型,并會(huì)使用材料(比如紙板)制作模型.自學(xué)導(dǎo)引1.正投影在物體的平行投影中,如果投射線與投射面垂直,則稱
2025-11-09 16:47
【總結(jié)】課題:向量的數(shù)乘(1)班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】1、理解向量數(shù)乘的含義,掌握向量數(shù)乘的運(yùn)算律;2、理解數(shù)乘的運(yùn)算律與實(shí)數(shù)乘法的運(yùn)算律的區(qū)別與聯(lián)系?!菊n前預(yù)習(xí)】1、質(zhì)點(diǎn)從點(diǎn)O出發(fā)做勻速直線運(yùn)動(dòng),若經(jīng)過(guò)s1的位移對(duì)應(yīng)的向量用a?表示,那么在同方
2024-12-05 00:28
【總結(jié)】學(xué)科:數(shù)學(xué)課題:函數(shù)的奇偶性教學(xué)目標(biāo)(三維融通表述):通過(guò)具體實(shí)例學(xué)生理解函數(shù)的奇偶性概念及其幾何意義,學(xué)會(huì)運(yùn)用函數(shù)圖象理解和研究函數(shù)的性質(zhì),學(xué)會(huì)運(yùn)用定義判斷函數(shù)奇偶性。通過(guò)學(xué)習(xí),學(xué)生進(jìn)一步體會(huì)數(shù)形結(jié)合的思想,感受從特殊到一般的思維過(guò)程;通過(guò)函數(shù)圖象的描繪及奇偶性的揭示,進(jìn)一步體會(huì)數(shù)學(xué)的對(duì)稱美,和諧美教學(xué)重點(diǎn):函數(shù)奇偶性的定義和幾
2024-12-05 01:51
【總結(jié)】教學(xué)目標(biāo):能記住二倍角公式,會(huì)運(yùn)用二倍角公式進(jìn)行求值、化簡(jiǎn)和證明,同時(shí)懂得這一公式在運(yùn)用當(dāng)中所起到的用途。培養(yǎng)觀察分析問(wèn)題的能力,尋找數(shù)學(xué)規(guī)律的能力,同時(shí)注意滲透由一般到特殊的化歸的數(shù)學(xué)思想及問(wèn)題轉(zhuǎn)化的數(shù)學(xué)思想。重點(diǎn)難點(diǎn):記住二倍角公式,運(yùn)用二倍角公式進(jìn)行求值、化簡(jiǎn)和證明;在運(yùn)用當(dāng)中如何正確恰當(dāng)運(yùn)用二倍角公式一、引入新課1、si
2025-11-09 16:43
【總結(jié)】三角函數(shù)的圖象與性質(zhì)(2)新授課學(xué)習(xí)目標(biāo)1、借助正弦函數(shù)的圖像,說(shuō)出正弦函數(shù)的性質(zhì);2、能利用正弦函數(shù)的性質(zhì)解決最值、奇偶性、單調(diào)性、周期性等有關(guān)問(wèn)題;
2024-11-27 23:47
【總結(jié)】3.2.1倍角公式(習(xí)題課)一。學(xué)習(xí)要點(diǎn):二倍角公式的應(yīng)用。二。學(xué)習(xí)過(guò)程:復(fù)習(xí)1.倍角公式:2.升冪公式:3.降冪公式:例1化簡(jiǎn)下列各式:1.???125sin12sin2.????40tan140tan23.2sin21575??1=例2已知
2025-11-10 03:40
【總結(jié)】正弦函數(shù)的圖象與性質(zhì)(四)一.學(xué)習(xí)要點(diǎn):正弦函數(shù)的性質(zhì)之奇偶性、單調(diào)性二.學(xué)習(xí)過(guò)程:復(fù)習(xí)1.正弦函數(shù)的圖象;2.正弦函數(shù)的周期性;3.正弦函數(shù)的定義域、值域.新課學(xué)習(xí):1.奇偶性由??sinsinxx???知:正弦函數(shù)sinyx?是,正弦曲線關(guān)于原點(diǎn)對(duì)稱.正弦
2024-11-27 23:50
【總結(jié)】§弧度制與角度制(課前預(yù)習(xí)案)班級(jí):___姓名:________編寫:一、新知導(dǎo)學(xué)1、長(zhǎng)度等于半徑長(zhǎng)的圓弧所對(duì)的圓心角叫做,這種以弧度為單位來(lái)度量角的制度叫做。2、在半徑為r的圓中,弧長(zhǎng)為l的弧所對(duì)圓心角為α,則。3、完成下列表格度數(shù)
2024-11-27 23:51
【總結(jié)】§角的概念的推廣(課前預(yù)習(xí)案)班級(jí):__姓名:__編寫:一、新知導(dǎo)學(xué):在平面內(nèi),角可以看做是一條射線繞著它的端點(diǎn)旋轉(zhuǎn)而成的圖形.旋轉(zhuǎn)起始時(shí)的射線叫做角的,終止時(shí)的射線叫做角的,射線的端點(diǎn)叫做角的.按逆時(shí)針?lè)较蛐D(zhuǎn)所得到的角為,而按順時(shí)針?lè)较蛐D(zhuǎn)所得到的角為
2025-11-09 16:46
【總結(jié)】一、自學(xué)目標(biāo):1、理解半角公式的推導(dǎo)過(guò)程2、會(huì)運(yùn)用半角公式進(jìn)行相關(guān)的運(yùn)算。二、自學(xué)過(guò)程:C2α中令得cosα=2cos22?-1=1-2sin22?,將公式變形可得2?C=;2?S=。2.2?T的推導(dǎo)方法是2?S與2?C兩
2024-11-27 23:35