【總結(jié)】不等式約束問題??libXPXfiTi???1,s.t.)(min線性不等式約束優(yōu)化問題??liXgXfi???1,0)(s.t.)(min一般性不等式約束優(yōu)化問題不等式約束在給定點的分類及其作用liXgi????1,0)?(設(shè)滿足所有約束,即X?0)?(?XgjX?如果
2024-10-12 13:37
【總結(jié)】不等式的解法????類型mdcxbax)2(a)x(fa)x(f)1(??????或形如定理bababa?????baba)iv(baba)iii(baba)ii(baba)i(,Rb,a)1(1????????????
2025-07-18 00:19
【總結(jié)】喬瑞霞蛟河三中:1.不等式,一元一次不等式2.不等式的解3.不等式的解集4.解一元一次不等式一.基本概念:?不等式的基本性質(zhì)(3條):?1)不等式兩邊都加上(或減去)同一個數(shù)或同一個整式,不等號的方向____.?2)不等式兩邊都乘以(或除以)同一個
2024-08-14 01:06
【總結(jié)】不等式的性質(zhì)(一)復(fù)習(xí)1、說明下列等式變形的理由:移項等式性質(zhì)1:等式兩邊同時加(減)同一個數(shù)或式子,等式仍然成立。復(fù)習(xí)2、說明下列等式變形的理由:系數(shù)化為1等式性質(zhì)2:等式兩邊同時乘以(除以)同一個不為零的數(shù),等式仍然成立。探究1、用“”或””填空:(1)
2024-11-10 05:32
【總結(jié)】知識回顧:(1)不等式的性質(zhì)有哪些?不等式性質(zhì)1:不等式兩邊加上(或減去)同一個數(shù)(或式子),不等號的方向不變.不等式性質(zhì)2:不等式兩邊乘(或除以)同一個正數(shù),不等號的方向不變.不等式性質(zhì)3:不等式兩邊乘(或除以)同一個負(fù)數(shù)
2024-11-06 21:52
【總結(jié)】§(2)一元一次方程的應(yīng)用儲蓄問題和銷售問題(1)小杰2月初到銀行將積攢的300元零用錢定期儲蓄一年,到期時小杰得到的稅前本利和是多少?稅后本利和是多少?(2)永樂商場以700元的進(jìn)價購入一批MP3,商場加價20%的作為售價,那么這款MP3的實際售價是多少?
2024-11-06 13:39
【總結(jié)】1.比較實數(shù)大小的依據(jù):作差—變形—判斷符號—定結(jié)論2.比較實數(shù)大小的基本步驟:a-b0?abab?a-b0a=b?a-b=0問題1:如何比較兩數(shù)大???.)4)(2()5)(3(.1的大小與比較例????aaaa:作差法比較大小的步驟作差變
2025-07-26 12:19
【總結(jié)】不等式的性質(zhì)?學(xué)習(xí)要求:?.?.?.?一.復(fù)習(xí)?不等式的基本原理及含義?a-b0ab?a-b=0a=b?a-bab?四大作用:?(1)
2024-11-17 14:49
【總結(jié)】不等式的證明【例1】已知a0,b0,求證:a3+b3≥a2b+ab2.(課本P12例3)即a3+b3≥a2b+ab2.證明一:比較法(作差)(a3+b3)-(a2b+ab2)=(a3-a2b)+(b3-ab2)=a2(a-b)+b2(b-a)∵a0,b>
2024-11-06 13:38
【總結(jié)】第7講不等式的解法主講人:馮老師(一)一元一次不等式的解法加法法則:ab?a+cb+c乘法法則:ab,且c0?acbcab,且c0?acbc復(fù)習(xí):觀察下列式子(1)x=4;
2025-07-25 23:54
【總結(jié)】第3課時均值不等式1.均值不等式基礎(chǔ)知識梳理2.常用的幾個重要不等式(1)a2+b2≥(a,b∈R);(2)ab(a+b2)2(a,b∈R);(3)a2+b22(a+b2
2025-07-24 03:54
【總結(jié)】不等式的證明松北高級中學(xué)吳宏亮【例1】已知a0,b0,求證:a3+b3≥a2b+ab2.(課本P12例3)即a3+b3≥a2b+ab2.證明一:比較法(作差)(a3+b3)-(a2b+ab2)=(a3-a2b)+(b3-ab2)=a2(a-b)+b2(b-a)
2024-11-10 05:07
【總結(jié)】2020/12/13洪湖二中:王愛平2020年12月2020/12/13設(shè)一元二次方程對應(yīng)的二次函數(shù)為(1)方程在區(qū)間內(nèi)有兩個不等的實根的充要條件是(2)方程在區(qū)間內(nèi)有兩個不等的實根的充要條件是(3)方程有一根大于,另一根小于的充要條件是(1)oxyk(3)
【總結(jié)】不等式與不等式組綜合檢測題一、選擇題1,若-a>a,則a必為()2,已知a<0,-1<b<0,則a,ab,ab2之間的大小關(guān)系是()>ab>ab2>ab2>a>a>ab2D.ab<a<ab23,(
2024-11-12 02:11
【總結(jié)】2022年春人教版數(shù)學(xué)七年級下冊課件第九章不等式與不等式組不等式的性質(zhì)第2課時利用不等式的性質(zhì)解不等式第九章不等式與不等式組不等式知識管理學(xué)習(xí)指南歸類探究當(dāng)堂測評分層作業(yè)不等式的性質(zhì)第2課時利用不等式
2025-06-19 12:14