【正文】
充分回收及合理利用能量上,主要方向是研制性能更好的催化劑、降低氨合成壓力、開發(fā)新的原料氣凈化方法、降低燃料消耗、回收和合理利用低位熱能等。對原有合成氨裝置進(jìn)行改擴(kuò)建,利用國家對農(nóng)業(yè)的傾斜政策,節(jié)能技術(shù)改造見效快、可很快提高企業(yè)生產(chǎn)規(guī)模,改擴(kuò)建改造會給企業(yè)帶來了巨大的經(jīng)濟(jì)和社會效益。但人均耕地面積只有世界平均水平的47%,而人口在本世紀(jì)中葉將達(dá)到約16億,糧食始終是至關(guān)重要的問題。 我國合成氨工業(yè)始于20世紀(jì)30年代,經(jīng)過多年的努力,我國的合成氨工業(yè)得到很大的發(fā)展,建國以來合成氨工業(yè)發(fā)展十分迅速,從六十年代末、七十年代初至今,我國陸續(xù)引進(jìn)了三十多套現(xiàn)代化大型合成氨裝置,已形成我國特有的煤、石油、天然氣原料并存和大、中、小規(guī)模并存的合成氨生產(chǎn)格局。世界上85%的合成氨用做生產(chǎn)化肥,世界上99%的氮肥生產(chǎn)是以合成氨為原料。 關(guān)鍵詞: 碳酸丙烯酯法;脫碳工藝;工程設(shè)計 Abstract Decarbonizing section is one of the absolutely necessary sections in the Synthetic Ammonia, and the Carbon dioxide absorption tower and the solution regeneration tower are indispensable tower equipment in the Synthetic Ammonia. Whether the ammonia plant use what raw materials to make feed gas, it contains large amount Carbon dioxide after transformation. The ammonia can not be synthesized if these Carbon dioxide are not removable in time. the other hand, the Carbon dioxide is the raw material of the urea and ammonium bicarbonate etc,it can be processed carbon dioxide ice, food grade Carbon dioxide. Designing Carbon dioxide absorption tower is function to recovery Carbon dioxide. This paper tradeoff advantages and disadvantages of much approach to decarbonization, propylene carbonate (PC) decarbonization is selected finally. The technological process was analyzed, and the material and heat was balanced according to parameters and relevant standards firstly. The tower body general structure was designed calculation by using physical absorption Mechanism, mass transfer and heat transfer equation, solution physical data stc secondly. And then the strength of the Carbon dioxide absorption tower and the solution regeneration tower are checked. The decarbonizing section structural arrangement was reasonable design finally. Key Words:Decarbonization process。這些二氧化碳如果不在合成氨工序前及時除凈,氨的合成就無法進(jìn)行下去;另一方面,二氧化碳本身是制取尿素、碳酸氫銨等產(chǎn)品的原料,也可加工成干冰、食品級二氧化碳。如果發(fā)表相關(guān)成果,一定征得指導(dǎo)教師同意,且第一署名單位為呂梁學(xué)院。對本文的研究成果做出重要貢獻(xiàn)的個人和集體,均已在文中以明確方式標(biāo)明。LULIANG UNIVERSITY分類號: 密 級: 畢業(yè)設(shè)計題 目: 年產(chǎn)18萬噸合成氨脫碳工段 工藝設(shè)計 系 別: 化學(xué)化工系 專業(yè)年級: 化學(xué)工程與工藝2010級 姓 名: 學(xué) 號: 20100707102 指導(dǎo)教師: 講師 2014年05月25日 原 創(chuàng) 性 聲 明本人鄭重聲明:本人所呈交的畢業(yè)論文,是在指導(dǎo)老師的指導(dǎo)下獨立進(jìn)行研究所取得的成果。本聲明的法律責(zé)任由本人承擔(dān)。本人離校后使用畢業(yè)論文或與該論文直接相關(guān)的學(xué)術(shù)論文或成果時,第一署名單位仍然為呂梁學(xué)院。二氧化碳吸收塔的設(shè)計具有回收二氧化碳的功能。 Carbon dioxide removal with PC method。雖然全球一體化的發(fā)展減少了用戶的選擇范圍,但市場的穩(wěn)定性卻相應(yīng)地增加了,世界化肥生產(chǎn)的發(fā)展趨勢是越來越集中到那些原料豐富且價格便宜的地區(qū),中國西北部有蘊(yùn)藏豐富的煤炭資源,為發(fā)展合成氨工業(yè)提供了極其便利的條件。目前我國合成氨產(chǎn)能和產(chǎn)量己躍居世界前列。化肥對農(nóng)作物的增產(chǎn)作用己為大家所公認(rèn),中國施肥水平還有很大的提高空間,尤其是中西部市場。 發(fā)展趨勢原料路線的變化方向。現(xiàn)在已提出以天然氣為原料的節(jié)能型合成氨新流程多種。中國開發(fā)的用氨水脫除二氧化碳直接制碳酸氫銨新工藝,以及中國、意大利等國開發(fā)的變換氣氣提法聯(lián)合生產(chǎn)尿素工藝,都有明顯的優(yōu)點。其生產(chǎn)工藝流程包括:脫硫、轉(zhuǎn)化、變換、脫碳、甲烷化、氨的合成、吸收制冷及輸入氨庫和氨吸收八個工序[1]。在最終產(chǎn)品為尿素的合成氨中,脫碳單元處于承前啟后的關(guān)鍵位置,其作用既是凈化合成氣,又是回收高純度的尿素原料CO2。脫碳系統(tǒng)的能力將影響合成氨裝置的能力,必須同步進(jìn)行擴(kuò)能改造。此外,CO2還是重要的化工原料,如合成尿素就需以CO2為主要原料。為了防止氣體夾帶出脫碳液,脫碳后的液體進(jìn)人洗滌塔,用軟水洗去液沫后再進(jìn)入甲烷化換熱器。再生后的脫碳掖(貧液),先進(jìn)溶液空冷器,冷卻至65℃左右,由溶液循環(huán)泵加壓,再經(jīng)溶液水冷器冷卻至40℃后,送人二氧化碳吸收塔循環(huán)使用。根據(jù)CO2與溶劑結(jié)合的方式,脫除CO2的方法有化學(xué)吸收法、物理吸收法和物理化學(xué)吸收法三大類。(l)烷鏈醇胺類的脫碳工藝有:①乙醇胺(monoethanolamine,H2NCH2CH2OH,MEA)法;②甲基二乙醇胺(methyl diethanolamine,CH3N(CH2CH2OH)2,MDEA)法;③活化MDEA法(即aMDEA工藝)。該法的最大優(yōu)點是可以在一個十分簡單的裝置中,把合成氣中的CO2脫除到可以接受的程度。由于MDEA具有以上優(yōu)點,所以不需要毒性防腐劑,設(shè)備管道允許采用廉價碳鋼材料,不需要鈍化過程,耗熱低,設(shè)備管道不需要伴熱盤管,能達(dá)到很好的節(jié)能效果[3]。BAFS公司推出的aMDEA脫碳工藝,主要用于對原來MEA工藝的改造,近幾年我國一些研究單位正在對這方面進(jìn)行積極的研究。后來有人用氨基乙酸取代As2O3,消除了毒性,成為無毒GV法。低熱耗苯菲爾工藝是由美國聯(lián)碳公司在傳統(tǒng)苯菲爾工藝基礎(chǔ)上開發(fā)的,采用了節(jié)能新技術(shù)。中海石油化學(xué)有限公司合成氨裝置脫碳系統(tǒng)采用改良型苯菲爾流程[5]。相對化學(xué)吸收法,物理洗滌法的最大優(yōu)點是能耗低, CO2不與溶劑形成化合物,減壓后絕大部分CO2被閃蒸出來,然后采用氣提或負(fù)壓實現(xiàn)溶劑的完全再生。 NHD法NHD法被認(rèn)為是目前能耗最低的脫碳工藝之一,該法使用的溶劑為聚乙二醇二甲醚的混合物,其分子式為CH3O(CH2CH2O)nCH2,式中n=28。 碳酸丙烯酯法(PC)法碳酸丙烯酯法是碳酸丙烯酯為吸收劑的脫碳方法。適用于吸收壓力較高、CO2凈化度不很高的流程,國內(nèi)主要是小型廠使用。變壓吸附法分離氣體混合物的基本原理是利用某一種吸附劑能使混合氣體中各組份的吸附容量隨著壓力變化而產(chǎn)生差異的特性,選擇吸附和解吸再生兩個過程,組成交替切換的循環(huán)工藝,吸附和再生在相同溫度下進(jìn)行。目前,此種類型的裝置在全國合成氨廠已廣泛采用。低溫甲醇(Rectisol)法具有一次性脫除CO2,溶液便宜易得,能耗低,適用范圍廣泛等特點。常溫甲醇法是在甲醇中加入了二乙醇胺,當(dāng)CO2分壓升高時,以其在甲醇中溶解的物理吸收為主;當(dāng)CO2分壓較低時,以其與二乙醇胺發(fā)生化學(xué)反應(yīng)的化學(xué)吸收為主,該法應(yīng)用范圍廣,凈化率高,但對H2S和CO2的選擇性較差,己很少使用。據(jù)初步統(tǒng)計,已有150余家工廠使用PC技術(shù),現(xiàn)有裝置160余套,其中大型裝置兩套,其余為中小型裝置。加之PC法在工藝上與水洗法相似,改造費用低,很快在一些小氮肥企業(yè)中推廣應(yīng)用;第二階段,20世紀(jì)90年代以來,隨著小化肥改變碳銨單一產(chǎn)品結(jié)構(gòu),適應(yīng)市場需要,采用脫碳增氨轉(zhuǎn)產(chǎn)尿素或聯(lián)醇等方法,以提高經(jīng)濟(jì)效益,增強(qiáng)小化肥的竟?fàn)幠芰?。碳丙溶劑對CO2等酸性氣體的吸收能力較大,一般為同條件下水吸收能力的4倍。但這種效果隨著工藝配置、設(shè)備、操作狀況,處理規(guī)模和目的的不同而差異較大。根據(jù)各廠的具體情況和氨加工產(chǎn)品的不同,相匹配的碳丙脫碳條件及要求亦各異。由常解塔解吸出來的常解氣進(jìn)入常解汽提氣洗滌塔的常解氣洗滌段,與自上而下的稀液逆流接觸,將常解氣中夾帶的碳酸丙烯酯液滴與飽和于常解氣中的碳酸丙烯酯蒸氣回收下來,常解氣自常解氣洗滌段出來后進(jìn)入常解氣分離器,將常解氣中夾帶的碳酸丙烯酯液滴進(jìn)一步分離,常解氣自分離器頂部出來送食品二氧化碳工段。(2) 稀液流程循環(huán)稀液(或軟水)由常解汽提氣洗滌塔的常解段出來,經(jīng)稀液泵加壓后送往凈化氣洗滌塔上部自上而下。目前碳丙脫碳技術(shù)已提高到一個新的階段,已工業(yè)應(yīng)用的或即將應(yīng)用的最有吸引力的進(jìn)展有以下幾個方面。由此可見,必須對這種結(jié)構(gòu)徹底改造。復(fù)合溶劑法的優(yōu)點從選擇性和吸收能力分析,特別是高分壓下,選擇合適的復(fù)合溶劑,優(yōu)于純?nèi)軇?,顯著地提高了溶劑的吸收能力;另一方面明顯地降低了能耗。為了在較低操作壓力下獲得需要的氣體凈化度、降低溶劑循環(huán)量、節(jié)省動力消耗、降低溶劑蒸發(fā)損失,吸收操作可在低于常溫條件下進(jìn)行,即低溫碳酸丙烯酯脫碳技術(shù)。因此,在國際經(jīng)濟(jì)與國家政策的前提下,將合成氨的風(fēng)險和利潤投入到中間工序脫碳工段,對陷入困境的化工行業(yè)是一個很好的出路,對內(nèi)外交困的合成氨行業(yè)來說,可以選擇與鎳鐵行業(yè)進(jìn)行戰(zhàn)略聯(lián)盟,以避免風(fēng)險,降低成本。其它組分被忽略);(3)%;(4) PC吸收劑的入塔濃度根據(jù)操作情況選?。唬?) 氣液兩相的入塔溫度均選定為30℃;(6) ;(7) 年工作日330d,每天24h連續(xù)運行?,F(xiàn)假設(shè)出塔氣體 溫度與入塔液的溫度相同,為Tv2=30℃,出塔液的溫度為TL1=35℃,并取吸收飽和度(定義為出塔溶液濃度對其平衡濃度的百分?jǐn)?shù))為80%,然后利用物料衡算結(jié)合熱量衡算驗證生疏溫度假設(shè)的正確性。30℃:PL1=1192kg/ m3;35℃:PL2=1187 kg/ m3 PC的蒸汽壓查PC理化數(shù)據(jù)知,PC蒸汽壓于操作總壓及CO2的氣相分壓相比均很小,故可認(rèn)為PC不揮發(fā)。其它氣體在PC中的溶解度很小,故也可將CO2以外的組分視為惰性氣體而忽略不計,而只考慮CO2的溶解吸收,即將多組分吸收簡化為單組份吸收的問題。 溶劑夾帶量 Nm3/m3PC計,各組分被夾帶的量如下:CO2:= Nm3/m3PCCO:= Nm3/m3PCH2:= Nm3/m3PCN2:= Nm3/m3PC 溶液帶出的氣量為夾帶量與溶解量之和CO2:+= Nm3/m3PC %CO:+= Nm3/m3PC %H2:+= Nm3/m3PC %N2:+= Nm3/m3PC % Nm3/m3PC 100%以VVV3分別代表進(jìn)塔(出塔及溶液帶出的總氣量,以yyy3分別代表CO2相應(yīng)的體積分率,對CO2作物料衡算有:聯(lián)立兩式解之得V1==27990Nm3/hV2= V1 V3=68265Nm3/h Nm3,故有:L==1191m3/h11911187=2006746kg/h操作的氣液比為V1/L=96255/1691= Nm3/m3 入塔液中CO2夾帶量L0=443757=1476kg/h 帶出氣體的質(zhì)量流量夾帶氣量:3757=1127 Nm3/h夾帶氣的平均摩爾質(zhì)量:1=44+28+2+28=夾帶氣的質(zhì)量流量:507247。 出塔氣的組成出塔氣體的體積流量應(yīng)為入塔氣體的體積流量與PC帶走氣體的體積流量之差CO2:2139003757= Nm3/h %CO:2139003757= Nm3/h %H2:213900+3757= Nm3/h %N2:213900+= Nm3/h % Nm3/h %出塔氣的平均