【總結】「自我感悟」函數(shù)最值與函數(shù)的單調性研究方法的聯(lián)系與區(qū)別「自我檢測」檢測1:。的最小值是函數(shù)_________xxy21????「自我檢測」檢測1:。的最小值是函數(shù)_________xxy21????。的最小值是函數(shù)_________xxy12???檢測2
2025-03-12 14:39
【總結】問題探究大。數(shù)比左邊的點表示的數(shù),右邊的點表示的與表示兩個不同的實數(shù)分別與點:在數(shù)軸上不同的點 探究baBA1BAbaxAax(B)(b)ABabx從數(shù)軸上兩點的位置(如圖3-1-1)可以看出a,b之間具有哪些性質。探究2:任意給出兩個實數(shù)a,b你能想到哪些比大
2025-03-12 14:54
【總結】1.“直線上升,對數(shù)增長,指數(shù)爆炸”的增長特點;2.數(shù)學建模大致過程。知識回顧新知探究?何時?)時,何時,( ?、诋?shù)慕獾膫€數(shù)有幾個? ?、俜匠?222202xxxxxxx??????探究1:恒成立嗎?情況怎樣?增長與)時,,( 當nxnxx
2025-03-12 21:14
【總結】【課前練習】21cossinsin???xxxy)0,4(?M處的切線的斜率為()1、曲線在點2、函數(shù)的單調遞增xexxf)3()(??區(qū)間是()??fxkxInx????1,??k3、若函數(shù)在區(qū)間單調遞增,則的取值范圍是()32()32fx
2025-03-12 14:58
【總結】知識回顧同底數(shù)冪的運算性質與對數(shù)運算性質自我感悟)22)(33(325432143845432loglogloglogloglogloglogalogClogca??????)()()(化簡下列各式:基礎檢測檢測1:求值9425532logloglo
2025-03-12 14:51
【總結】自我感悟教材P87—P88通過對二次函數(shù)零點所在區(qū)間其有的特點,得出一般函數(shù)y=f(x)在區(qū)間[a,6]上是否存在零點的“零點存在性定理”。請你思考以下幾個問題:(1)為何規(guī)定函數(shù)y=f(x)的圖象是連續(xù)不斷的?(2)為何只研究f(a)·f(b)
【總結】問題探究探究1:已知平面上兩點P1(-1,2),P2(2,)求P1,P2的距離|P1P2|?7探究2:已知平面上兩點P1(x1,y1),P2(x2,y2),如何求P1,P2的距離|P1P2|?探究3:通過上訴探究,請問研究兩點距離你有幾種常用的分析策略?探究4:通已知A(-1,2),
【總結】問題探究RCsincBsinbAsinaABCRCBAcbaCABCRt2901???????? 圓的半徑,求證:的外接是所的邊長,,,為角,,,中,:在 探究結論是否還成立?中,上述:在任意一個三角形 探究ABC2CsinBsinAsincbaCsin
2025-03-12 14:29
【總結】生活中經(jīng)常遇到求利潤最大、用料最省、效率最高等問題,這些問題通常稱為優(yōu)化問題。通過前面的學習,我們知道,導數(shù)是求函數(shù)最大(小)值的有力工具。本節(jié)我們運用導數(shù),解決一些生活中的優(yōu)化問題。情景設置解決優(yōu)化問題的基本思路是:優(yōu)化問題用函數(shù)表示的數(shù)學問題優(yōu)化問題的答案用導數(shù)解決數(shù)學問題思路小結上述解
【總結】「自我檢測」的方法。,并總結汞函數(shù)定義域組教材;則,,若)()()(設函數(shù)124223)(222112)(1TAP.________xxfxxxxxxxf.???????????????「鞏固過關」236321
【總結】知識回顧對數(shù)函數(shù)及其性質)34(2115032???xlogyxlogy..);()(求下列函數(shù)的定義域知識檢測)23(2)4(1222122xxlogyxlogy.?????);()(求下列函數(shù)的值域:)的單調區(qū)間。(求函數(shù)22233xxlogy.???
【總結】研讀教材P5-P6:基本旋轉體的結構特征1.類比多面體:棱柱、棱錐、棱臺的研究方法(1)圓柱、圓錐、圓臺與球的圓形及結構特征;(2)圓柱、圓錐、圓臺與球的表示法;(3)圓柱、圓錐、圓臺與球的性質;2.柱體、椎體與臺體的分類:3.柱體、椎體與臺體間的相互聯(lián)系:檢測1:教材P9T1(4);檢測2:教
【總結】一:溫故知新處的導數(shù):在函數(shù)0)(.1xxxfy??處的導數(shù):在函數(shù)0)(.1xxxfy??xxfxxfxyxf????????)()(limlim)('0000??x0??x一:溫故知新的導函數(shù):函數(shù))(.2xfy?的導函數(shù):函數(shù))(.2xfy?xxfxxfyxfx?????
【總結】一、溫故知新1.函數(shù)的單調性與其導函數(shù)的正負的關系:.)(,0)('。)(,0)(',),(這個區(qū)間內單調遞減在那么函數(shù)如果增在這個區(qū)間內單調遞那么函數(shù)如果內在某個區(qū)間xfyxfxfyxfba????2.用導數(shù)法討論函數(shù)單調區(qū)間的基本步驟:;)求導數(shù)(;的定義域)求函數(shù)(
【總結】知識回顧1.圓的標準方程;2.圓的一般方程;3.點P0(x0,y0)與圓(x-a)2+(y-b)2=r2的位置關系判斷。問題探究標。,請求其坐的位置關系,若有交點與圓試判斷直線,:,圓:?。┲本€(,請求其坐標。的位置關系,若有交點與圓判斷直線,試:,圓: )直線(請求其坐標。,的位