【總結】等差數(shù)列的概念與通項公式A組基礎鞏固1.{an}為等差數(shù)列,且a7-2a4=-1,a3=0,則公差d等于()A.-2B.-12D.2解析:根據(jù)題意,得a7-2a4=a1+6d-2(a1+3d)=-1,∴a1=∵a3=a1+2d=0,∴d=-12.答案:B2.等
2024-12-08 20:23
【總結】等差數(shù)列的通項公式及應用習題 一、單選題(每道小題3分共63分) 1.已知等差數(shù)列{an}中,a2=2,a5=8,則數(shù)列的第10項為 A.12B.14C.16D.18 2.已知等差數(shù)列前3項為-3,-1,1,則數(shù)列的第50項為[] A.91B.93C.95D.97 3.已知等差數(shù)列首項為2,末項為62,公差為4,則這
2025-03-25 06:56
【總結】、b、c成等差數(shù)列2cab??2b=a+c????1.{an}為等差數(shù)列?an+1-an=d?an+1=an+dan=a1+(n-1)d?an=kn+b(k、b為常數(shù))b為a、c的等差中項知識回顧結論歸納:數(shù)列{an}是公差為d的等差數(shù)列。
2024-11-18 08:48
【總結】等差數(shù)列定義:按一定次序排列的一列數(shù)叫數(shù)列(3)數(shù)列中的數(shù)是有順序的,而數(shù)集合的數(shù)是無序的。(2)數(shù)列中的數(shù)是可重復的,而數(shù)集中的數(shù)是互異的。(1)數(shù)列與數(shù)集都是具有某種共同屬性的數(shù)的全體。知識回顧數(shù)列與數(shù)集有何區(qū)別和聯(lián)系數(shù)列分類:項數(shù)有限的數(shù)列叫有窮數(shù)列;
【總結】復習回顧通項公式:等差數(shù)列中:前n項和公式:例題講解例1.求集合中元素的個數(shù),并求這些元素的和。解:代公式可得或由,即或答:集合M中共有14個元素,它們的和等于7
2024-11-09 05:34
【總結】若數(shù)列的前n項和記為Sn,即Sn=a1+a2+a3+……+an-1+anSn-1∴當n≥2時,有an=Sn-Sn-110歲的高斯(德國)的算法:n首項與末項的和:1+100=101n第2項與倒數(shù)第2項的和:2+99=101n第3項與倒數(shù)第3項的和:3+98=101n………………………………………n
2025-08-15 20:31
【總結】????????100321:引例一德國數(shù)學家高斯(數(shù)學王子)1+100=1012+99=1013+98=101??????50+51=1012)1001(100100??S5050?,,:如何求鋼管的總數(shù)多少是從上到下的鋼管數(shù)分別如圖引例二思考:如果在這堆鋼管的旁邊堆放著同樣一堆
2025-08-16 01:26
【總結】景榮洲課前熱身(3)等差數(shù)列的性質.(1)等差數(shù)列的定義.一般地,如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列(2)等差數(shù)列通項公式dnaan)1(1???若a、b、c成等差數(shù)列,則2b=a+c(引申)若m、n、
2024-11-17 05:48
【總結】.等差數(shù)列的通項公式及應用習題 一、單選題(每道小題3分共63分) 1.已知等差數(shù)列{an}中,a2=2,a5=8,則數(shù)列的第10項為 A.12B.14C.16D.18 2.已知等差數(shù)列前3項為-3,-1,1,則數(shù)列的第50項為[] A.91B.93C.95D.97 3.已知等差數(shù)列首項為2,末項為62,公差為4
2025-07-25 04:57
【總結】等差數(shù)列(1)觀察數(shù)列:(1)4,5,6,7,8,9……(2)3,0,?3,?6,……(3)12,9,6,3,……一.等差數(shù)列定義如果一個數(shù)列從第2項起,每一項減去它一項的差等于一個常
2024-11-21 02:20
【總結】看圖片數(shù)個數(shù)?數(shù)列數(shù)列數(shù)列數(shù)列等差數(shù)列的概念復習回顧數(shù)列的定義,通項公式,遞推公式按一定次序排成的一列數(shù)叫做數(shù)列。一般寫成a1,a2,a3,…,an,…,簡記為{an}。如果數(shù)列{an}的第n項an與n的
2025-08-05 10:43
【總結】.1等差數(shù)列的概念七、教學過程(一)創(chuàng)設情景,引入概念(設計意圖:通過對實際問題的分析對比,建立等差數(shù)列模型,體驗數(shù)學發(fā)現(xiàn)和創(chuàng)造的過程)情景1:把班上學生學號從小到大排成一列:如:1,2,3,4,?,63,64.問題1:請學生歸納出上一個數(shù)列的通項公式),521(,?????Nnnnan。問
2024-11-19 21:23
【總結】課題:必修⑤三維目標:1、知識與技能(1)理解等差數(shù)列前項和的定義以及等差數(shù)列前項和公式推導的過程,并理解推導此公式的方法——倒序相加法,記憶公式的兩種形式;(2)用方程思想認識等差數(shù)列前項和的公式,利用公式求;等差數(shù)列通項公式與前項和的公式兩套公式涉及五個字母,已知其中三個量求另兩個值;(3)會用等差數(shù)列的前項和公式解決一些簡單的與前項和有關的問題.
2025-06-07 23:27
【總結】等差數(shù)列前n項和公式復習回顧(1)等差數(shù)列的通項公式:已知首項a1和公差d,則有:an=a1+(n-1)d已知第m項am和公差d,則有:an=am+(n-m)d,d=(an-am)/(n-m)
2025-08-15 20:34
【總結】等差數(shù)列的前n項和公式一新課引入一個堆放鉛筆的V形架的最下面一層放一支鉛筆,往上每一層都比它下面一層多放一支,最上面一層放100支.這個V形架上共放著多少支鉛筆?播放課件一個堆放小球的V形架問題就是“”?1004321???????這是小學時就知道的一個故事,
2024-10-09 17:22