freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

什么是生物數(shù)學(xué)-wenkub

2023-02-24 20:33:14 本頁面
 

【正文】 txCtxtaxtxtx?? ? Fan D, Hong L. Hopf bifurcation analysis in a synaptically coupled FHN neuron model with delays. ? Commun Nonlinear Sci Numer Simulat (2023), doi: for FHN neuron model with one delay ? Obviously, E (0,0,0,0) is an equilibrium of system (1), linearizing it gives ? )2().()()()),(()()()()(),()()()),(()()()()(.423.4.2124333.321.1.21312131.1???????????????????????????txbtxtxtxCtxtaxtxtxtxbtxtxtxCtxtaxtxtx?? ? The characteristic equation associated with system (2) is given by 12()432 12( ) ( ) 0A B C D E b b e ? ? ?? ? ? ? ? ? ??? ? ? ? ? ? ? ?12 2A b b a? ? ?21ccE ?Where , , 21 2 1 22 ( ) 2B b b a b b a? ? ? ? ? abbbabbbaC 22)( 2121212 ??????21212 1 ababbbaD ????(3) ? For and , Eq.(3) bees 01 ?? 02 ?? 432 12( ) ( ) 0A B C D E b b? ? ? ? ? ?? ? ? ? ? ? ? ?(4) By RouthHurwitz criterion we know that if (H) is satisfied then all roots of Eq.(3) have negative real parts. for FHN neuron model with one delay ? Obviously, iv(v0) is a root of Eq.(4) if and only if 4 3 2 1 2 1 1( ) ( ) ( c os sin ) 0v A v i B v Cv i D E v i b v i b v i??? ? ? ? ? ? ? ? ?(5) Separating the real and imaginary parts gives ( .sincos,cossin311311124????vvbvEvCvAvvEbvEvDvv????????(6) ? Taking square on the both sides of the equations of (6) and summing them up ,and let y=v2 , which leads to: ? where 0234 ????? sryqypyy(7) 62 ??Ap DACq 229 ??? 22 6 EDCr ??2212 EbDs ?? ? Denote sryqypyyyh ????? 234)(Then we have rqypyyyh ???? 234)( 2339。 ? 目前,對(duì)于非線性時(shí)滯動(dòng)力系統(tǒng)尚沒有針對(duì)性特別強(qiáng)的研究方法,討論非線性常微分方程的方法,大多可以 經(jīng)過改造用于非線性時(shí)滯微分方程的研究。例如我們?nèi)粘I钪杏龅降囊曈X和聽覺的時(shí)滯現(xiàn)象、動(dòng)物血液再生原理,森林再生原理等。 兩個(gè)最近的事例 ? SARS ?在對(duì) SARS的研究中,生物數(shù)學(xué)就發(fā)揮了作用。HOPF BIFURCATION IN A SYNAPTICALLY COUPLED FHN NEURON MODEL WITH TWO DELAYS Liping Zhang College of Science, Nanjing University of Aeronautics and Astronautics 2023/07/30 什么是生物數(shù)學(xué)? ? 生物數(shù)學(xué)是生物學(xué)與數(shù)學(xué)之間的邊緣學(xué)科,用數(shù)學(xué)方法研究和解決生物學(xué)問題,也對(duì)與生物學(xué)有關(guān)的數(shù)學(xué)方法進(jìn)行理論研究。 2023年春 SARS暴發(fā)時(shí),在有效的疫苗和抗病毒藥物研制出來之前,科學(xué)家最關(guān)心的是 SARS流行的特征。 ? 考慮到種群密度變化對(duì)于增長(zhǎng)率的影響都不是瞬間發(fā)生的 ,而是與過去的生活狀態(tài)有關(guān) , 即有時(shí)間滯后的,還有動(dòng)物消化食物也需要一定的時(shí)間。例如研究生物動(dòng)力系統(tǒng)平衡點(diǎn)存在唯一性方法有:不動(dòng)點(diǎn)定理、 M矩陣和重合度理論等;平衡點(diǎn)局部穩(wěn)定性分析最基本的方法仍是考察特征方程根的變化,例如無害時(shí)滯不改變系統(tǒng)正平衡位置的漸近穩(wěn)定性,所以利用時(shí)滯為零時(shí)系統(tǒng)的漸近性去研究時(shí)滯不為零時(shí)系統(tǒng)正平衡位置的局部穩(wěn)定性,即用線性近似法研究研究平衡點(diǎn)的局部穩(wěn)定性問題。(8) (9) Set .023423 ???? rqypyy (10) ? Let 4pyz ??, then (10) bees 0113 ??? qzpz(11) where 21 1632 pqp ??, 483221rpqpq ??? Define 3121 )3()2(pq ???231 ????(12) ? Without loss of generality, we assume that Eq.(7) has four positive roots, denoted by , and , respectively. Then Eq.(6) has the four positive roots *kk zv ? )4,3,2,1( ?k we have .)]()[()()()()(sin,)]()[()()())((cos221221213212422122121322124kkkkkkkkkkkkkkkkkkvbbvbbEbbvCvAvbbvDBvvvvbbvbbEbbvCvAvvbbDBvvv??????????????
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)課件相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1