【總結(jié)】 應(yīng)用舉例(2)識解決實際問題的一般過程是:(1)將實際問題抽象為 (畫出平面圖形,轉(zhuǎn)化為 的問題);?(2)根據(jù)問題中的條件,適當(dāng)選用銳角三角函數(shù)等 ;?(3)得到 的答案;?(4)得到 的答案.&
2025-06-18 05:25
【總結(jié)】應(yīng)用舉例第2課時,仰角與俯角有何區(qū)別?如圖,有兩建筑物,在甲建筑物上從A到E點掛一長為30米的宣傳條幅,在乙建筑物的頂部D點測得條幅頂端A點的仰角為45°,條幅底端E點的俯角為30°.求甲、乙兩建筑物之間的水平距離BC.AEDCB甲乙
2025-06-12 08:22
【總結(jié)】應(yīng)用舉例第1課時(2)兩銳角之間的關(guān)系∠A+∠B=90°(3)邊角之間的關(guān)系caAA???斜邊的對邊sincbBB???斜邊的對邊sincbAA???斜邊的鄰邊coscaBB???斜邊的鄰邊cosbaAAA???
2025-06-20 00:53
【總結(jié)】 解直角三角形及其應(yīng)用 解直角三角形學(xué)前溫故新課早知在Rt△ABC中,∠C=90°,∠A,∠B,∠C所對的邊分別為a,b,c,則a,b,c,∠A,∠B這五個元素間的等量關(guān)系:邊角之間的關(guān)系sinA= ;cosA= ;tanA= ;?sinB= ;cosB= ;t
2025-06-19 12:03
【總結(jié)】解直角三角形及其應(yīng)用解直角三角形根據(jù)以上條件可以求出塔身中心線與垂直中心線的夾角.你愿意試著計算一下嗎?如圖設(shè)塔頂中心點為B,塔身中心線與垂直中心線的夾角為A,過點B向垂直中心線引垂線,垂足為點C,在Rt△ABC中,∠C=90°,BC=,AB=利用計算器可得.BCA
2025-06-13 12:13
【總結(jié)】應(yīng)用舉例第2課時【基礎(chǔ)梳理】方向角:___________方向線與目標(biāo)方向線所成的小于90°的角,叫做方向角.如圖中的目標(biāo)方向線OA,OB,OC,OD的方位角分別表示為___________,__________,___________,___________.指北或指南北偏東30°
2025-06-20 03:51
【總結(jié)】應(yīng)用舉例第1課時【基礎(chǔ)梳理】、俯角的概念(1)測量時,在視線與水平線所成的角中,視線在水平線_____的角叫做仰角.(2)視線在水平線_____的角叫做俯角(如圖所示).上方下方(1)把實際問題建立_________.(2)根據(jù)已知條件,選用適當(dāng)?shù)腳____函數(shù)解直角三角形
2025-06-20 03:56
【總結(jié)】解直角三角形及其應(yīng)用解直角三角形【基礎(chǔ)梳理】由直角三角形中的_________,求出其余_________的過程.已知元素未知元素如圖,在Rt△ABC中,∠C=90°,a,b,c,∠A,∠B為其五個元素.這五個元素之間的關(guān)系如下:(1)兩銳角之間的關(guān)系:∠A+∠B=__
2025-06-16 15:39
【總結(jié)】28.2解直角三角形第3課時,第一頁,編輯于星期六:七點七分。,1.能應(yīng)用解直角三角形的知識解決與方位角、坡度有關(guān)的實際問題.2.培養(yǎng)學(xué)生分析問題、解決問題的能力;滲透數(shù)形結(jié)合的數(shù)學(xué)思想和方法.,第二...
2024-10-21 21:46
【總結(jié)】解直角三角形及其應(yīng)用第二十八章銳角三角函數(shù)考場對接題型一已知直角三角形中兩邊,解直角三角形例題1在Rt△ABC中,∠C=90°,BC=35,AB=35,解這個直角三角形.解在Rt△ABC中,由勾股定理,得∴∠A=45
2025-06-16 15:28
2025-06-16 13:38
【總結(jié)】解直角三角形九年級下冊?、直角三角形的兩個銳角互余及銳角三角函數(shù)解直角三角形.?2.通過實際問題的情境,感受在生活、學(xué)習(xí)中解直角三角形知識的實際意義.學(xué)習(xí)目標(biāo)1.(1)在直角三角形中,由____________________________求__________的過程叫做解直角三角形;(2)在Rt△ABC中,∠
2025-06-18 18:32
【總結(jié)】導(dǎo)入新課講授新課當(dāng)堂練習(xí)課堂小結(jié)解直角三角形及其應(yīng)用第二十八章銳角三角函數(shù)解直角三角形學(xué)習(xí)目標(biāo)1.了解并掌握解直角三角形的概念;2.理解直角三角形中的五個元素之間的聯(lián)系.(重點)3.學(xué)會解直角三角形.(難點)導(dǎo)入新課ACBcba(1)三邊之間的關(guān)系:a
2025-06-19 07:11
【總結(jié)】28.2解直角三角形第1課時,第一頁,編輯于星期六:七點七分。,1.使學(xué)生理解直角三角形中六個元素的關(guān)系,會運用勾股定理,直角三角形的兩個銳角互余及銳角三角函數(shù)解直角三角形.2.滲透數(shù)形結(jié)合的數(shù)學(xué)思想...