【總結(jié)】第十八章勾股定理同步練習(xí)及單元檢測勾股定理(1)1.填空:(1)如圖,在下列橫線上填上適當(dāng)?shù)闹担?2)求出下列各圖中陰影部分的面積(單位:cm2).圖(1)陰影部分的面積為____; 圖(2)陰影部分的面積為____;圖(3)陰影部分的面積為____;ACDB(3)直角三角形的兩直角邊
2025-07-07 13:07
【總結(jié)】勾股定理(知識點(diǎn))【知識要點(diǎn)】1.勾股定理的概念:如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那么a2+b2=c2.即直角三角形兩直角邊的平方和等于斜邊的平方。常用關(guān)系式由三角形面積公式可得:AB·CD=AC·BC2.勾股定理的逆定理
2025-06-22 04:18
【總結(jié)】勾股定理練習(xí)題一、基礎(chǔ)達(dá)標(biāo):1.下列說法正確的是( )a、b、c是△ABC的三邊,則a2+b2=c2;a、b、c是Rt△ABC的三邊,則a2+b2=c2;a、b、c是Rt△ABC的三邊,,則a2+b2=c2;a、b、c是Rt△ABC的三邊,,則a2+b2=c2.2.Rt△ABC的三條邊長分別是、、,則下列各式成立的是( )A.B. C
2025-06-22 07:15
【總結(jié)】第1頁共5頁八年級數(shù)學(xué)勾股定理及其逆定理(勾股定理)基礎(chǔ)練習(xí)試卷簡介:全卷共6個(gè)選擇題,5個(gè)填空題,2個(gè)大題,分值100,測試時(shí)間30分鐘。本套試卷立足基礎(chǔ),主要考察了學(xué)生對勾股定理及其逆定理基礎(chǔ)知識及基本運(yùn)用的的掌握。各個(gè)題目難度有階梯性,學(xué)生在做題過程中可以回顧本章知識點(diǎn),認(rèn)清自己對知識的掌握及靈活運(yùn)用程
2025-08-20 18:06
【總結(jié)】第1頁共4頁八年級數(shù)學(xué)勾股定理拓展提高(勾股定理)拔高練習(xí)試卷簡介:本測試卷共有13道題,其中5道填空題,5道解答題,3道證明題,分四個(gè)板塊,板塊一為回顧練習(xí),回顧暑期學(xué)到的關(guān)于勾股定理的主要知識,相關(guān)題目為教材1、2、3題;板塊二為直角三角形六大性質(zhì),勾股定理只是直角三角形六大性質(zhì)之一,將直角三角形
2025-08-11 10:00
【總結(jié)】勾股定理復(fù)習(xí)一、要點(diǎn)精練(一)勾股定理1、(填空題)已知在Rt△ABC中,∠C=90°。①若a=3,b=4,則c=________;②若a=40,b=9,則c=________;③若a=6,c=10,則b=_______;④若c=25,b=15,則a=________。2、(填空題)已知在Rt△ABC中,∠C=90°,AB=10。①若∠A=30
2025-04-16 23:55
【總結(jié)】一勾股定理驗(yàn)證(等面積法)解題思路:將所給三角形拼成大圖形用等面積法:大圖形面積=各小圖形面積和。例1、如圖所示,可以利用兩個(gè)全等的直角三角形拼出一個(gè)梯形.借助這個(gè)圖形,你能用面積法來驗(yàn)證勾股定理嗎?例2、如圖矩形是由四個(gè)直角三角形拼成,題中已給出各邊長,試證明勾股定理。例3、圖中的正方形均是由Rt△ABC拼成,試驗(yàn)證勾股定理。2、
2025-06-22 03:47
【總結(jié)】勾股定理的應(yīng)用舉例練習(xí)題1、如圖所示,已知在三角形紙片ABC中,BC=3,AB=6,∠BCA=90°.在AC上取一點(diǎn)E,以BE為折痕,使AB的一部分與BC重合,A與BC延長線上的點(diǎn)D重合,則DE的長度為( ?。〢.6?????B.3
2025-03-24 13:00
【總結(jié)】《勾股定理》典型例題分析一、知識要點(diǎn):1、勾股定理勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。也就是說:如果直角三角形的兩直角邊為a、b,斜邊為c,那么a2+b2=c2。公式的變形:a2=c2-b2,b2=c2-a2。2、勾股定理的逆定理如果三角形ABC的三邊長分別是a,b,c,且滿足a2+b2=c2,那么三角形ABC是直角三角形。這個(gè)定
2025-03-24 12:59
【總結(jié)】《勾股定理》典型例題分析二、考點(diǎn)剖析考點(diǎn)一:利用勾股定理求面積1、求陰影部分面積:(1)陰影部分是正方形;(2)陰影部分是長方形;(3)陰影部分是半圓.2.如圖,以Rt△ABC的三邊為直徑分別向外作三個(gè)半圓,試探索三個(gè)半圓的面積之
【總結(jié)】勾股定理知識總結(jié)一.基礎(chǔ)知識點(diǎn):1:勾股定理 直角三角形兩直角邊a、b的平方和等于斜邊c的平方。(即:a2+b2=c2) 要點(diǎn)詮釋:勾股定理反映了直角三角形三邊之間的關(guān)系,是直角三角形的重要性質(zhì)之一,其主要應(yīng)用:(1)已知直角三角形的兩邊求第三邊(在中,,則,,ABC?90???2cab?2ca??)2acb??(2)已知直角三角形的一邊
【總結(jié)】勾股定理同步練習(xí)題1.已知直角三角形中30°角所對的直角邊長是cm,則另一條直角邊的長是()A.4cmB.cmC.6cmD.cm2.△ABC中,AB=15,AC=13,高AD=12,則△ABC的周長為( )A.42B.32C.42或32
2025-06-23 07:39
【總結(jié)】勾股定理練習(xí)題一、基礎(chǔ)達(dá)標(biāo):1.下列說法正確的是( ?。゛、b、c是△ABC的三邊,則a2+b2=c2;a、b、c是Rt△ABC的三邊,則a2+b2=c2;a、b、c是Rt△ABC的三邊,,則a2+b2=c2;a、b、c是Rt△ABC的三邊,,則a2+b2=c2.2.Rt△ABC的三條邊長分別是、、,則下列各式成立的是( ?。〢.B. C
2025-06-22 07:28
【總結(jié)】勾股定理練習(xí)題一、基礎(chǔ)達(dá)標(biāo):1.下列說法正確的是( )a、b、c是△ABC的三邊,則a2+b2=c2;a、b、c是Rt△ABC的三邊,則a2+b2=c2;a、b、c是Rt△ABC的三邊,,則a2+b2=c2;a、b、c是Rt△ABC的三邊,,則a2+b2=c2.2.Rt△ABC的三條邊長分別是、、,則下列各式成立的是( ?。〢.B. C
2025-06-22 07:39