【總結(jié)】橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)練習(xí)題一1.若曲線ax2+by2=1為焦點在x軸上的橢圓,則實數(shù)a,b滿足( )A.a(chǎn)2b2B.0,所以0ab.2.一個橢圓中心在原點,焦點F1,
2025-07-15 02:23
【總結(jié)】橢圓標(biāo)準(zhǔn)方程典型例題一、知識要點:1、橢圓的定義:第一定義:平面內(nèi)與兩個定點F1、F2的距離之和為等于常數(shù)(大于|F1F2|)的點的軌跡叫做橢圓,這兩個定點叫做橢圓的焦點,兩焦點間的距離叫做焦距.①當(dāng),點P無軌跡;②當(dāng)時,點P的軌跡為線段;③當(dāng)時,點P的軌跡為橢圓。第二定義:平面內(nèi)一個動點到一個定點的距離和它到相應(yīng)的定直線的距離的比是小于1的正常數(shù),這個動點的軌跡叫橢圓,定點是橢
2025-08-09 19:49
【總結(jié)】復(fù)習(xí)::到兩定點F1、F2的距離之和為常數(shù)(大于|F1F2|)的動點的軌跡叫做橢圓。:a,b,c的關(guān)系是:a2=b2+c2|)|2(2||||2121FFaaPFPF???當(dāng)焦點在X軸上時當(dāng)焦點在Y軸上時)0(12222????babyax)0(12222????
2024-11-18 11:25
【總結(jié)】平面內(nèi)與兩個定點F1、F2的距離的差的絕對值等于常數(shù)(小于|F1F2|)的點的軌跡叫做雙曲線.這兩個定點叫做雙曲線的焦點,兩焦點的距離叫做雙曲線的焦距。:)22(,2||||||21caaMFMF???即).0,0(12222????babxay).0,0(12222????babyax:
2024-11-21 05:33
【總結(jié)】一、知識再現(xiàn)前面我們學(xué)習(xí)了橢圓的簡單的幾何性質(zhì):范圍、對稱性、頂點、離心率.我們來共同回顧一下橢圓x2/a2+y2/b2=1(ab0)幾何性質(zhì)的具體內(nèi)容及其研究方法.12222??byax橢圓
2024-11-12 19:05
【總結(jié)】22194xy??共焦點,且過點(3,-2)的橢圓方程。分析:先確定焦點在哪個坐標(biāo)軸另解:設(shè)橢圓的方程為221(4)94xy?????????則,點(3,-2)代入得6,(6)?????舍去故所求方程為2211510xy??求橢圓的方程12(6,1),(3,2),??
2025-07-25 10:46
【總結(jié)】東莞市樟木頭中學(xué)李鴻艷xyOKHFMl目標(biāo)掌握拋物線的定義、標(biāo)準(zhǔn)方程、幾何圖形,能夠求出拋物線的方程,能夠解決簡單的實際問題..重點拋物線的方程的四種形式及應(yīng)用.難點拋物線標(biāo)準(zhǔn)方程的推導(dǎo)過程.1、拋物線的定義,代數(shù)表達式,標(biāo)準(zhǔn)方程。2.前面我們學(xué)習(xí)了橢圓、雙曲線的哪些幾何性質(zhì)?
2024-11-12 16:43
【總結(jié)】橢圓一、選擇題(本大題共10小題,每小題5分,共50分)1.下列命題是真命題的是 () A.到兩定點距離之和為常數(shù)的點的軌跡是橢圓 B.到定直線和定點F(c,0)的距離之比為的點的軌跡是橢圓 C.到定點F(-c,0)和定直線的距離之比為(ac0)的點的軌跡是左半個橢圓D.到定直線和定點F(c,0)的距離之比為(ac0)的點
2025-06-20 08:24
【總結(jié)】標(biāo)準(zhǔn)方程圖象范圍對稱性頂點坐標(biāo)焦點坐標(biāo)半軸長焦距a,b,c關(guān)系離心率22221(0)xyabab????22221(0)xyabba????關(guān)于x軸、y軸成
2025-07-25 11:30
【總結(jié)】1《雙曲線的簡單幾何性質(zhì)》教學(xué)設(shè)計富源縣第一中學(xué)李耀明一、教材分析本節(jié)課是學(xué)生在已掌握雙曲線的定義及標(biāo)準(zhǔn)方程之后,在此基礎(chǔ)上,反過來利用雙曲線的標(biāo)準(zhǔn)方程研究其幾何性質(zhì)。它是教學(xué)大綱要求學(xué)生必須掌握的內(nèi)容,也是高考的一個考點,是深入研究雙曲線,靈活運用雙曲線的定義、方程、性質(zhì)解題的基礎(chǔ),更能使
2024-11-21 03:48
【總結(jié)】雙曲線的性質(zhì)(一)莫旗職教中心徐志宏222bac??定義圖象方程焦點的關(guān)系||MF1|-|MF2||=2a(02a|F1F2|)F(±c,0)F(0,±c)122
2024-11-30 11:22
【總結(jié)】《橢圓的幾何性質(zhì)》教學(xué)目標(biāo)?知識與技能目標(biāo)?了解用方程的方法研究圖形的對稱性;理解橢圓的范圍、對稱性及對稱軸,對稱中心、離心率、頂點的概念;掌握橢圓的標(biāo)準(zhǔn)方程、會用橢圓的定義解決實際問題;通過例題了解橢圓的第二定義,準(zhǔn)線及焦半徑的概念,利用信息技術(shù)初步了解橢圓的第二定義.?過程與方法目標(biāo)?(1)復(fù)習(xí)與引入過程
2025-07-24 18:14
【總結(jié)】導(dǎo)標(biāo):首先,請同學(xué)們回憶一下:1、橢圓的定義是什么?2、橢圓的標(biāo)準(zhǔn)方程是什么?3、對應(yīng)的橢圓圖形是怎樣?今天,我們將從橢圓的標(biāo)準(zhǔn)方程出發(fā),借助圖形來探求橢圓的一些幾何性質(zhì)。達標(biāo):一、橢圓的范圍oxy由11122222222?????b
2024-11-18 15:24
【總結(jié)】1直線與圓錐曲線的有關(guān)綜合問題,我們已經(jīng)接觸了一些,在我們看來就是三句話的實踐:(一)設(shè)而不求;(二)聯(lián)立方程組,根與系數(shù)的關(guān)系;(三)大膽計算分析,數(shù)形結(jié)合活思維.拋物線的簡單幾何性質(zhì)(三)這一節(jié)我們來做幾個關(guān)于直線與拋物線的問題……2作圖直覺嘗試解答分析:
2024-11-09 08:09
【總結(jié)】橢圓的性質(zhì)問題1:①橢圓是不是軸對稱圖形?是不是中心對稱圖形?為什么?②標(biāo)準(zhǔn)位置的橢圓的對稱軸是什么?對稱中心是什么?結(jié)論:①橢圓是軸對稱圖形,也是中心對稱圖形。②標(biāo)準(zhǔn)位置的橢圓的對稱軸是x軸、y軸,原點是它的對稱中心。橢圓的對稱中心叫做橢圓的中心。問題2:?,)(12222分
2025-08-16 02:00