【正文】
systems can be divided into aspects. It includes hardware and software technology. Just using the hardware technologies such as magic separation coupling filtering noise pensation there are still some band interference invading systems and can not fully meet the III application system requirements. Software anti jamming technology is also needed. Hardware and software ingenious bination is the way to improve the reliability of embedded systems. This paper provides CAN bus munication reliability analysis and battery management system design based on hybrid power driving Bus EQ6110 test platform and CAN bus design for the BMS. Author also studies of various factors which impact system reliability. A CAN bus information scheduling model and Synchronous and asynchronous conception has been presented in the text. Different types of messages can be transmitted separately. Finally author presents the priority promoting scheduling algorithm. Living test confirm that the improved battery management system can be safely and reliably operated as we intended. The algorithm not only can improve the system performance of realtime munication and bandwidth utilization, also to a certain extent to avoid the appearance of the message deadlock. Finally, the author of this topic summarized the research work in the project and pointed out that further research on the subject of the future direction. Keywords: battery management system CAN bus information model scheduling algorithm 目 錄 第 1 章 緒論 ............................................................1 課題研究的背景 .....................................................1 電池管理系統(tǒng)及其通信網(wǎng)絡(luò)技術(shù)發(fā)展現(xiàn)狀 ...............................2 國外的發(fā)展?fàn)顩r .................................................2 國內(nèi)的發(fā)展?fàn)顩r .................................................3 CAN 總線在電池管理系統(tǒng)應(yīng)用中的優(yōu)勢與存在的問題 .....................4 汽車網(wǎng)絡(luò)環(huán)境采用 CAN 總線通信的優(yōu)勢 .............................4 CAN 總線運(yùn)用在電池管理系統(tǒng)通信節(jié)點上中存在的問題 ................5 第 2章 電池管理系統(tǒng)設(shè)計方案 ..........................................6 電池管理器工作原理 .................................................6 智能管理模塊設(shè)計思路 ...............................................8 CAN 總線通信模塊 ...............................................8 充放電保護(hù)模塊 .................................................9 電池管理系統(tǒng)的通信節(jié)點網(wǎng)絡(luò)模型 .....................................9 電池管理系統(tǒng)的拓?fù)浣Y(jié)構(gòu) .........................................9 電池控制模塊中的消息系統(tǒng) ......................................10 本章小結(jié) ..........................................................11 第 3 章 CAN總線技術(shù)分析 ..............................................12 CAN 總線網(wǎng)絡(luò)協(xié)議分析 ...............................................12 CAN 總線的特點 .................................................12 CAN 總線的分層結(jié)構(gòu) ............................................12 CAN 總線多址接入 /沖突避免 (CSMA/CA)機(jī)制 .........................13 CAN 總線的報文傳輸 .............................................14 CAN 總線調(diào)度算法研究 ...............................................19 固定優(yōu)先級調(diào)度算法 ............................................19 固定優(yōu)先級調(diào)度算法中的消息分類 ................................20 固定優(yōu)先級調(diào)度算法的優(yōu)先級分配 ................................21 CAN 總線的錯誤檢測與處理機(jī)制 ......................................21 總線中的錯誤類型 ..............................................21 故障界定 ......................................................22 本章小節(jié) ..........................................................23 第 4章 系統(tǒng)硬件設(shè)計 .................................................. 24 數(shù)字信號處理器的選擇 .............................................. 24 DSP 外圍電路的設(shè)計 ................................................ 25 DSP 電源及復(fù)位電路設(shè)計 ........................................ 25 DSP 仿真器及 JTAG 接口 ........................................ 26 采 集 電 路 .....................................................26 電 壓 采 集 ...................................................26 電流采集 ......................................................27 溫度采集 ......................................................28 A/D 轉(zhuǎn)換電路的設(shè)計 .................................................29 本章小結(jié) ..........................................................31 第 5 章 電池管理系統(tǒng)的軟件設(shè)計 ......................................33 軟件設(shè)計概述 ...................................................... 33 主程序設(shè)計及相關(guān)子程序設(shè)計 .....................................33 主 程 序 設(shè) 計 .................................................33 模數(shù)轉(zhuǎn)換子程序 .............................................34 電池判斷子程序 ............................................. 35 中斷服務(wù)程序 ......................................................36 軟件抗于擾設(shè)計 ....................................................37 本章小結(jié) ..........................................................38 第 6 章 電池管理系統(tǒng)的實驗設(shè)計 ......................................39 實 驗 目 的 ......................................................39 實驗平臺 ..........................................................39 電池信息檢測試驗 ..................................................40 CAN 通信顯示 ..................................................43 實驗結(jié)果 ..........................................................44 本章小結(jié) ..........................................................44 結(jié)論 ...................................................................45 參考文獻(xiàn) .............................................................. 46 致謝 ...................................................................47 1 第 1 章 緒論 課題研究的背景 能源消耗在汽車中的比例占主要工業(yè)國 家能源消耗的兩層以上 [1],由于現(xiàn)代社會的能源危機(jī)使人們認(rèn)識到傳統(tǒng)的內(nèi)燃機(jī)需要利用新的能源輔助,混合動力汽車是汽車工業(yè)將要面臨的一場深刻的革命 [2]。采用了優(yōu)先級提升算法對系統(tǒng)進(jìn)行了改進(jìn)設(shè)計 ,該算法不但可以提高系統(tǒng)實時通信的性能和帶寬利用率 ,還在一定程度上避免了消息死鎖的出現(xiàn)。提高管理系統(tǒng)通信可靠性的技術(shù)可分為硬件和軟件兩個方面 ,僅采用硬件技術(shù) ,如電磁隔離、去禍濾波、噪聲補(bǔ)償?shù)?,仍有一些頻段的干擾侵入系統(tǒng) ,不能完全滿足應(yīng)用系統(tǒng)的要求。電動汽車作為未來汽車的發(fā)展方向 ,越來越受到人們的重視。要使各種電動汽車能與傳統(tǒng)內(nèi)燃機(jī)汽