【正文】
and outer races. Consequently,lubrication migration and contamination are always problems. Once a bearing is contaminated, its lubricant deteriorates and operation bees noisier. If it overheats, the bearing can seize. At the very least, contamination causes wear as it works between balls and the raceway, being imbedded in the races and acting as an abrasive between metal surfaces. Fending off dirt with seals and shields illustrates some 5 methods for controlling contamination. Noise is as an indicator of bearing quality. Various noise grades have been developed to classify bearing performance capabilities. Noise analysis is done with an Anderonmeter, which is used for quality control in bearing production and also when failed bearings are returned for analysis. A transducer is attached to the outer ring and the inner race is turned at 1,800rpm on an air spindle. Noise is measured in andirons, which represent ball displacement in μm/rad. With experience, inspectors can identify the smallest flaw from their sound. Dust, for example, makes an irregular crackling. Ball scratches make a consistent popping and are the most difficult to identify. Innerrace damage is normally a constant highpitched noise, while a damaged outer race makes an intermittent sound as it rotates. Bearing defects are further identified by their frequencies. Generally, defects are separated into low, medium, and high wavelengths. Defects are also referenced to the number of irregularities per revolution. Lowband noise is the effect of longwavelength irregularities that occur about to 10 times per revolution. These are caused by a variety of inconsistencies, such as pockets in the race. Detectable pockets are manufacturing flaws and result when the race is mounted too tightly in multiplejaw chucks. Mediumhand noise is characterized by irregularities that occur 10 to 60 times per revolution. It is caused by vibration in the grinding operation that produces balls and raceways. Highhand irregularities occur at 60 to 300 times per revolution and indicate closely spaced chatter marks or widely spaced, rough irregularities. Classifying bearings by their noise characteristics allows users to specify a noise grade in addition to the ABEC standards used by most manufacturers. ABEC defines physical tolerances such as bore, outer diameter, and runout. As the ABEC class number increase (from 3 to 9), tolerances are tightened. ABEC class, however, does not specify other bearing characteristics such as raceway quality, finish, or noise. Hence, a noise classification helps improve on the industry standard. GEAR AND SHAFT INTRODUCTION Abstract: The important position of the wheel gear and shaft can39。 the two angles are equal for a 90deg. Shaft angle. When gears are to be used to transmit motion between intersecting shaft, some of bevel gear is required. Although bevel gear are usually made for a shaft angle of 90 deg. They may be produced for almost any shaft angle. The teeth may be cast, milled, or generated. Only the generated teeth may be classed as accurate. In a typical bevel gear mounting, one of the gear is often mounted outboard of the bearing. This means that shaft deflection can be more pronounced and have a greater effect on the contact of teeth. Another difficulty, which occurs in predicting the stress in bevelgear teeth, is the fact the teeth are tapered. Straight bevel gears are easy to design and simple to manufacture and give very good results in service if they are mounted accurately and positively. As in the case of squr gears, however, they bee noisy at higher values of the pitchline velocity. In these cases it is often good design practice to go to the spiral bevel gear, which is the bevel counterpart of the helical gear. As in the case of helical gears, spiral bevel gears give a much smoother tooth action than straight bevel gears, and hence are useful where high speed are encountered. It is frequently desirable, as in the case of automotive differential applications, to have gearing similar to bevel gears but with the shaft offset. Such gears are called hypoid gears because their pitch surfaces are hyperboloids of revolution. The tooth action between such 8 gears is a bination of rolling and sliding along a straight line and has much in mon with that of worm gears. A shaft is a rotating or stationary member, usually of circular cross section, having mounted upon it such elementsas gears, pulleys, flywheels, cranks, sprockets, and other powertransmission elements. Shaft may be subjected to bending, tension, pression, or torsional loads, acting singly or in bination with one another. When they are bined, one may expect to find both static and fatigue strength to be important design considerations, since a single shaft may be subjected to static stresses, pletely reversed, and repeated stresses, all acting at the same time. The word “shaft” covers numerous variations, such as axles and spindles. Anaxle is a shaft, wither stationary or rotating, nor subjected to torsion load. A shirt rotating shaft is often called a spindle. When either the lateral or the torsional deflection of a shaft must be held to close limits, the shaft must be sized on the basis of deflection before analyzing the stresses. The reason for this is that, if the shaft is made stiff enough so that the deflection is not too large, it is probable that the resulting stresses will be safe. But by no means should the designer assume that they are safe。通過(guò)一些細(xì)致的偵察工作,我們可以采取行動(dòng)來(lái)避免軸承的再次失效。為了做到這一點(diǎn),再考察一下制造廠商的尺寸定位指南和所選軸承的使用特點(diǎn)是非常重要的。 通過(guò)失效后的分析可以得知對(duì)已經(jīng)失效的或?qū)⒁У?軸承應(yīng)該在哪些方面進(jìn)行查看。剝蝕通常是在載荷超過(guò)材料屈服極限時(shí)發(fā)生的。這種破壞稱為低荷振蝕。 消除振動(dòng)源并保持良好的軸承潤(rùn)滑可以防止低 荷振蝕。在卡住之前,過(guò)大的摩擦和熱量使軸承鋼軟化。如果這些條件不可避免,就應(yīng)仔細(xì)計(jì)算軸承壽命,以制定一個(gè)維護(hù)計(jì)劃。 蠕動(dòng)不象過(guò)早疲勞那樣普遍。為了防止蠕動(dòng),應(yīng)該先用肉眼檢查一下軸承箱 件和軸的配件。如果偏斜超過(guò) 176。潤(rùn)滑劑中的固體雜質(zhì)就象磨粒一樣。 12 銹是濕氣污染的一種形