freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

電氣工程及其自動化專業(yè)畢設(shè)外文翻譯--采樣數(shù)據(jù)模型預(yù)測控制-電氣類-wenkub

2023-05-18 20:21:05 本頁面
 

【正文】 1 引言 許多模型預(yù)測控制( MPC)計劃描述,在文獻上使用連續(xù)時間的模型和樣本狀態(tài) 的在離散的instants 時間。在 此框架內(nèi)可以解決一個非常大的一類系統(tǒng),非線性,時變的,非完整。 如同在許多其他采樣數(shù)據(jù)模型預(yù)測控制計劃, barbalat的引理一個重要的角色,在證明的名義穩(wěn)定的結(jié)果。見例如 [3, 7, 9, 13] ,也是 [6] 。( barbalat的引理是眾所周知的和有力的工具,以推斷的漸近穩(wěn)定性的非線性系統(tǒng),尤其是時間變系統(tǒng),利用 Lyapunov樣的辦法 。不過,這最后的財狀態(tài)可能 否則就不可能實現(xiàn),為某些類別的系統(tǒng),例如汽車一樣, 車輛(見 [8]為討論這個問題,這個例子) 。魯棒穩(wěn)定性能可以得到,因為我們顯示, 用一種廣義的版本 barbalat的引理。它可以證明即穩(wěn)定或魯棒性的結(jié)果在這里所描述的仍然有效,當(dāng)優(yōu)化進行了有限的參數(shù)化的管制,如分段常數(shù)控制(如在 [13]) ,或幫邦間斷反饋(如在 [9])。 注意到,在區(qū)間 控制值的選定是由單身人士因此,優(yōu)化的決定,都是進行在區(qū)間 與預(yù)期的效益,在計算時間 . 樂譜在這里通過的是如下。 兩人 的是指我們的最優(yōu)解,以一個開放的閉環(huán)優(yōu)化控制問題。它可以結(jié)果表明,與在此框架內(nèi)是有可能的地址和保證穩(wěn)定,魯棒性,由此產(chǎn)生的閉環(huán)控制系統(tǒng) 為一個非常大的類系統(tǒng),可能是非線性,時變的和非完整。不過,可能是主要的富有挑戰(zhàn)性的特點對非完整系統(tǒng)的是,這是不可能穩(wěn)定的話,剛才時間不變連續(xù)反饋獲準(zhǔn) [ 1 ] 。可以看出, 即采樣數(shù)據(jù)所描述的貨幣政策委員會的框架內(nèi),可結(jié)合自 然與 “ 抽樣反饋法 ” ,從而確定一個軌跡的方式,這是非常類似的概念,介紹了在 [ 5 ] 。 4 barbalat的引理和變種 barbalat的引理是眾所周知的和有力的工具,以推斷的漸近穩(wěn)定性非線性系統(tǒng), 尤其是時間變系統(tǒng),利用 Lyapunov樣辦法(見例如 [ 17 ]為討論和應(yīng)用) 。然后,運用 barbalat的引理,吸引力的軌跡的名義模型可以建立。 一個標(biāo)準(zhǔn)的結(jié)果,在微積分的國家,如果一個功能是較低的范圍和減少,那么收斂到一個極限。更確切地說, 對于 和 這里 M 是 連續(xù)的,徑向無界,正定功能。注意: 這個概念的穩(wěn)定,并不一定包括 Lyapunov 穩(wěn)定性財產(chǎn)是慣常在其他的概念,穩(wěn)定 。 我們的目標(biāo)是開車到某一所定的目標(biāo) θ ( ? irn )國家的非線性系統(tǒng)受界擾動 強勁的反饋貨幣政策委員 會的策略,是由多次獲得解決上線, 在每個采樣即時鈦, Min Max 的優(yōu)化問題,磷,以選取反饋 kti ,每一次使用當(dāng)前措施,該國的核電廠 xti 。這個是足夠的證明理論的穩(wěn)定結(jié)果,它甚至允許使用的結(jié)果,就 存在一個最小的解決方案,以最優(yōu)控制問題(如 [ 7 , 命題 2 ] ) 。問題的離散逼近,詳細討論了如在 [ 16 ]及 [ 12 ] 。在邦邦反饋策略, 管制的價值觀的策略是只允許在其中一個極端它的范圍。see . [17] for a discussion and applications). To show that an MPC strategy is stabilizing (in the nominal case), it is shown that if certain design parameters (objective function, terminal set, etc.) are conveniently selected, then the value function is mono tone decreasing. Then, applying Barbalat’s lemma, attractiveness of the trajectory of the nominal model can be established (. x(t) → 0 as t → ∞ ). This stability property can be deduced for a very general class of nonlinear systems: including timevarying systems, nonholonomic systems, systems allowing discontinuous feedbacks, etc. If, in addition, the value functionpossesses some continuity properties, then Lyapunov stability (. the trajectory stays arbitrarily close to the origin provided it starts close enough to the origin) can also be guaranteed (see . [11]). However, this last property might not be possible to achieve for certain classes of systems, for example a carlike vehicle (see [8] for a discussion of this problem and this example). A similar approach can be used to deduce robust stability of MPC for systems allowing uncertainty. After establishing monotone decrease of the value function, we would want to guarantee that the state trajectory asymptotically approaches some set containing the origin. But, a difficulty encountered is thatthe predicted trajectory only coincides with the resulting trajectory at specificsampling instants. The robust stability properties can be obtained, as we show,using a generalized version of Barbalat’s lemma. These robust stability resultsare also valid for a very general class of nonlinear timevarying systems allowing discontinuous feedbacks. The optimal control problems to be solved within the MPC strategy are here formulated with very general admissible sets of controls (say, measurable control functions) making it easier to guarantee, in theoretical terms, the existence of solution. However, some form of finite parameterization of the control functionsis required/desirable to solve online the optimization problems. It can be shown that the stability or robustness results here described remain valid when the optimization is carried out over a finite parameterization of the controls, such as piecewise constant controls (as in [13]) or as bangbang discontinuous feedbacks (as in [9]). 2 A SampledData MPC Framework We shall consider a nonlinear plant with input and state constraints, where the evolution of the state after time t0 is predicted by the following model. The data of this model prise a set containing all possible initial states at the initial time t0, a vector xt0 that is the state of the plant measured at time t0, a given function of possible control values. We assume
點擊復(fù)制文檔內(nèi)容
畢業(yè)設(shè)計相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1