【正文】
sions are not based on the maximization of expected moary value. In other words, when making decisions under uncertainty a decision maker is typically sensitive to risk, either risk averse or risk preferring. An individual’s risk sensitivity (risk preference) is influenced by several factors, especially that person’s current asset position. Typically, as a person’s position increase, the less riskaverse their behavior toward the same risk. A contractor’s risk aversion and its degree of risk exposure can have a major influence on construction decisions and the necessary amount of risk premium or contingency embedded in a contractor’s price in order to undertake the work. A more riskaverse contractor adopts a more conservative plan and includes a higher allowance as contingencies in his bid than a less riskaverse contractor does (Ioannou 1988). Thus, it is necessary to incorporate risk sensitivity into tunneling decisions. By considering all above factors, tunneling decisions can be considered a risksensitive dynamic probabilistic decision process, which can be structures by the risksensitive decision support system (Likhitruangsilp 2020). Risksensitive decision support system The risksensitive decision support system consists of three interrelated models: the probabilistic geologic prediction model, the probabilistic tunnel cost estimating model, and the risksensitive dynamic decision model. Probabilistic geologic prediction model The probabilistic geologic prediction model uses all available geologic information to characterize geologic uncertainty and variability along the tunnel profile in the probabilistic form of ground class transitions. The model is based on discretestate, continuousspace Markov processes of important geologic parameters (., rock fracture). These geologic Markov models are created from regional data (., geologic maps) and updated by locationspecific data (., borehole tests) using direct assessment or Bayesian updating (Ioannou 1984). The model has been programmed in MATLAB. Its input includes the length of tunnel, the extent of each stage (., round length), geologic parameters and their states, and the definition of ground classes. Based on this input, the model calculates the posterior state probabilities of geologic parameters and ground classes at different locations along the tunnel. Both state probabilities are subsequently used to determine the ground class transition probability matrices of the tunnel geology by applying the concept of posite ground class transitions (Likhitruangsilp 2020). The resulting transition probability matrices bee the input for the risksensitive dynamic decision model. Probabilistic tunnel cost model The probabilistic tunnel cost estimating model performs stochastic evaluation of tunneling time and cost performance for different binations of excavation and support methods with different ground classes (tunneling alternatives). The model includes the cost estimating submodel and the probabilistic scheduling submodel. The cost estimating submodel, created in a puter spreadsheet, organizes tunneling cost items, performs quantify takeoff putations, and calculates fixed costs and variable costs associated with each alternative. In addition to normal tunneling costs,it also considers risks of selecting a wrong excavation method during construction. Its input includes a work breakdown structure (WBS) designed specifically for tunneling projects。 Scotese, .,以及阿克曼, .( 1992)。 Likhitruangsilp,五,和約安努, . ( 2020)。 “初步地質(zhì)調(diào)查和實(shí)驗(yàn)室檢測:懸湖隧道,格倫伍德峽谷,科羅拉多州”的公路系,科羅拉多州準(zhǔn)備報告?!敝袊ㄔO(shè)工程與管理, ASCE的, 114( 4) ,532547 約安努, , .( 1998)。 “地質(zhì)勘查的經(jīng)濟(jì)價值,地下施工風(fēng)險降低策略。 “懸湖隧道,格倫伍德峽谷,科羅拉多的巖土工程方面的問題。隧道斷面和支持系統(tǒng)類型 3( SS3) 圖 2。 結(jié)論 被建議的風(fēng)險敏感型決策支持系統(tǒng),既可以量化,并納入與隧道工程相關(guān)的所有重大風(fēng)險是第一個系統(tǒng)。 圖 4 顯示了對給定西隧道段最佳的隧道策略,其承包商風(fēng)險規(guī)避系數(shù)γ =5。 圖 3 顯示了承包商的不同程度的風(fēng)險敏感性所產(chǎn)生的隧道風(fēng)險調(diào)整成本。 在一個特定的一輪施加挖掘方法中的爆破后單位成本取決于當(dāng)時的地面類。 概率隧道造價估算 根據(jù)本項目采用的施工資源獲得的信息,成本估算子模型對設(shè)備,勞動力,以及每個替代設(shè)備的成本進(jìn)行組織和計算。后驗(yàn)狀態(tài)概率的觀測點(diǎn)進(jìn)行編碼的主觀根據(jù)是地質(zhì)專家不同的評估,包括利茲,希爾和朱厄特公司( 1981),和 Scotese 和阿克曼( 1992)。例如,替代( EM2, GC3)代表使用 EM2 為特定的圓的決定,和爆破后當(dāng)時的地面類是 GC3(即,結(jié)構(gòu)不夠)。三種開挖方法( EM1, EM2, EM3)和初始支持系統(tǒng)( SS1, SS2, SS3)被設(shè)計來對應(yīng)于三個地 類。 應(yīng)用 懸湖隧道,在科羅拉多州的高速公路隧道項目,被用來證明了該系統(tǒng)的應(yīng)用。它的輸入包括地面類轉(zhuǎn)移概率矩陣,是針對每個階段的隧道的,是通過由概率隧道成本估算模型模擬出不同方案的隧道單位成本分布所確定的。 概率調(diào)度網(wǎng)絡(luò)使用蒙特卡羅模擬分析。 除了成本估算子模型的輸入,它需要為不同的隧道備選方案業(yè)務(wù)提供優(yōu)先級的網(wǎng)絡(luò) 。成本估算子模型的最終輸出是由固定的成本和不同的選擇可變成本混合而來。該模型包括成本估算子模型和概率調(diào)度子模型?;谠撦斎?,模型計算出地質(zhì)參數(shù)和地面類在沿隧道的不同位置后的狀態(tài)的概率。該模型是基于離散狀態(tài)的, 是 重要的地質(zhì)參數(shù)的連續(xù)空間馬爾可夫過程(例如,巖石斷裂)。因此,有必要將風(fēng)險敏感度 納入 隧道的決 策 。一個人的風(fēng)險敏感度(風(fēng)險偏好)是由幾個因素影響的,特別是 個 人目前的凈資產(chǎn) 狀況 。這種不確定性是存在 的, 即使地質(zhì)條件已知的 情況下 。這些方法包括適應(yīng)隧道開挖方法的修改(例如,臺階和多個漂移),圓長,鉆模式,并詳細(xì)介紹了支 護(hù) 。無論采取地下勘探的數(shù)量和程度,隧道地質(zhì) 在 開始之前不能稱為完美施工。全面和現(xiàn)實(shí)的隧道計劃必須爭取最優(yōu)決策,最大限度地減少時間并且同時解決重要的隧道風(fēng)險成本。這兩個模型提供了對風(fēng)險敏感的動態(tài)決策模型 這一 系統(tǒng)核心的主要輸入, 作為 可用項目信息 和承包商的風(fēng)險敏感度 職能,以此來 確定最優(yōu)開挖與支護(hù)順序和相應(yīng)的風(fēng)險調(diào)整后的隧道項目成本。本文提出了一種計算機(jī)化的決策支持系統(tǒng),集成了所有重要的隧道風(fēng)險。它由三個相互關(guān)聯(lián)的模型:地質(zhì)概率預(yù)測模型,概率隧道造價估算,風(fēng)險敏感 型 動態(tài)決策模型。該系統(tǒng)的一個實(shí)際公路隧道工程中的應(yīng)用說明了該方法的兩個建模能力 的 量化,并納入風(fēng)險,及其 具有的 對做出最佳決策的承包商的風(fēng)險敏感性程度的 有效性職能 。為此,風(fēng)險敏感型決策支持系統(tǒng)已發(fā)展到量化所有重要的隧道風(fēng)險,并確定最佳的隧道計劃和項目的風(fēng)險調(diào)整后