【正文】
kdf2 之間的條紋數(shù)和動(dòng)態(tài)負(fù)載可以用噸來計(jì)算,即數(shù)據(jù) (10) kdf1=ksf1|t=6= (11) kdf2=ksf2|t=6=? 因此,可以 用 計(jì)算式( 9)動(dòng)態(tài)加載。 圖 7 動(dòng)態(tài)負(fù)載校準(zhǔn)結(jié)果使用條紋數(shù)讀數(shù)。實(shí)驗(yàn)結(jié)果表明,兩個(gè)輸出條紋數(shù)及附 加 期可用于指示 荷載 。 。無論是動(dòng)態(tài)的車輛 荷載 ,和靜態(tài)荷載 可以得到。 4 結(jié)論 這里報(bào)告 在使用一個(gè) 光纖壓力傳感器的基礎(chǔ)上,介紹了邁克爾遜干涉儀。圖 7 顯示,根據(jù)不同的負(fù)荷率相同的最大靜載荷產(chǎn)生不同的動(dòng)態(tài)負(fù)載。當(dāng)加載速度很慢,動(dòng)態(tài)重量傳感器受到可以認(rèn)為是與加載速度慢的靜態(tài)重量相同。靜負(fù)荷 測(cè)量 結(jié)果。 由于紙張的長(zhǎng)度的限制,只有當(dāng) T =校準(zhǔn)結(jié)果 1 和 4 秒在圖 6 中 描述。線性函數(shù)和冪函數(shù)采用的條紋數(shù)數(shù)據(jù)及附 加 期間的數(shù)據(jù)。 靜態(tài)重量校準(zhǔn)測(cè)量 該函數(shù)逼近法是采用靜態(tài)重量校準(zhǔn)測(cè)量。 考慮均衡器( 5)及( 6),與壓力的條紋數(shù)及附 加 時(shí)期的功能 都可以接 近 的均衡器( 7)及( 8),分別為: (7) Ls=ksn1Nf+ksn2 (8) 其中參數(shù) ksn1, ksn2, kst1 和 kst2 接近 , 參數(shù) ksn1, ksn2, kst1和 kst2 接近 。當(dāng) 荷載 低,動(dòng)態(tài) 荷載 小的變化可能無法識(shí)別的條紋數(shù)。 圖 4 實(shí)驗(yàn)結(jié)果:邊緣的 數(shù)字 和 荷載 。 圖 3 典型的裝載程序和光纖傳感器的輸出波形。由于極化效應(yīng),條紋的振幅略有不同。 圖 3 顯示了應(yīng)用在斜坡函數(shù)加載的時(shí)間, 是由常用 的裝載配置 儀器 及附帶的干涉儀的輸出。該光纖壓力傳感器測(cè)量長(zhǎng)度為 毫米。 一個(gè) 鋼室的 設(shè)計(jì)研究 包含光纖。自觸發(fā)功能是通過施密特電路 , 施密特電路的閾值電壓設(shè)置根據(jù)實(shí)驗(yàn)來區(qū)分在測(cè)試環(huán)境造成的微小振動(dòng)引起的真正的條紋信號(hào)的車輛和假邊緣信號(hào)。( 3)提供減少噪音的功能 , 頻率波段類似的邁克爾遜干涉儀的輸出有用的 信息 。 該傳感器是由光纖通信級(jí)(康寧 SMF28)。并有研究校準(zhǔn)傳感 器數(shù)據(jù)標(biāo)定方法??粕僦Z和格羅斯曼開發(fā)利用的是動(dòng)態(tài)傳感器微彎理論容重在運(yùn)動(dòng)中的結(jié)果 [5]。為了提供降低安裝和維護(hù)成本的方法,以光纖為基礎(chǔ)的 WIM 系統(tǒng)動(dòng)態(tài)壓力傳感裝置現(xiàn)正開發(fā)的改進(jìn),未來可能取代目前使用的裝置。 關(guān)鍵詞:光 纖傳感器,動(dòng)態(tài)壓力,動(dòng)荷載,硬件和軟件 文章概要 1.介紹 2.傳感器的設(shè)計(jì) .傳感器安裝 .傳感器的工作原理 3.程序?qū)嶒?yàn)和結(jié)果 .實(shí)驗(yàn)裝置 .實(shí)驗(yàn)數(shù)據(jù) .重復(fù)試驗(yàn) .傳感器的校準(zhǔn) .標(biāo)定的靜態(tài)荷載 .標(biāo)定的動(dòng)荷載 4.結(jié)論 1 介紹 過去的幾十年中需要權(quán)衡運(yùn)動(dòng)荷載,特別是在交通控制中,已經(jīng)大幅增加。在研究報(bào)告中,是專門設(shè)計(jì)的邁克爾遜干涉儀的硬件和所設(shè)計(jì)的軟件遭受不同程度的動(dòng)態(tài)壓縮載荷和裝載率的實(shí)驗(yàn)。s outputs and the maximum amplitudes of the load under different loading rates. Fullsize image (33K) Fig. 4. The experimental results: the fringe numbers and fringe periods vs. loads. The fringe number has a linear relationship with the static load, while the fringe period has a nonlinear one. Note that, the relationship differs under different loading rates, since with increasing loading rate, the same maximum amplitude load will turn out to a bigger dynamic load, which causes the increase in fringe number and the decrease in fringe period. Though both the fringe number and the fringe period are sensitive to the dynamic load, their sensitive ranges are different. The sensitivity of the fringe number to load is a constant in the whole testing range. When load is low, the small change of dynamic load may not be recognized by the fringe number. On the other hand, the sensitivity of the fringe period to load is not a constant. When the load is low, the small change of dynamic load corresponds to big change of fringe period. These two parameters can be used together to give a more precise indication of the load tested. Considering Eqs. (5) and (6), the functions between loads and fringe number and fringe period can be approached as Eqs. (7) and (8), respectively: (7) Ls=ksn1Nf+ksn2 (8) where ksn1, ksn2, kst1 and kst2 are the parameters approached. . Repeatability of the sensor Three experimental results under the same loading conditions are pared in Fig. 5 demonstrating that the dynamic fiber optic pressure sensor has good repeatability. Fullsize image (21K) Fig. 5. Illustration of the repeatability of the optic fiber sensor. . Calibration of the sensor According to the fringe number and period of the optic fiber sensor output, the dynamic load and static load of the vehicle passed can be obtained from the calibration process. . Calibration of the static weight The function approach method was adopted to calibrate the static weight measured. It should be mentioned that the load duration time t should also be gained by the sensor system in order to get the static weight. Usually it is easy to get. The following steps are taken to calibrate the static weight: Step 1: Using the function approach method to approach the measured data when the sensor experienced the different static applied load with the same loading rate. Linear function and power function are adopted for the fringe number data and fringe period data. The approached results are shown in Table 1. Table 1. Step 1 approached results Loading time Approached ksn1, ksn2 for relation bet