【總結(jié)】魯能師傅想在一塊三角形的白鐵皮上裁下一個(gè)圓,做成一個(gè)水桶的底,問怎樣裁這個(gè)圓面積最大?ABC魯能師傅想在一塊三角形的白鐵皮上裁下一個(gè)圓,做成一個(gè)水桶的底,問怎樣裁這個(gè)圓面積最大?ABC魯能師傅想在一塊三角形的白鐵皮上裁下一個(gè)圓,做成一個(gè)水桶的底,問怎樣裁這個(gè)圓面積最大?ABC魯能師傅想在一塊三角形的白
2024-11-27 23:38
【總結(jié)】三角形的內(nèi)切圓展示課3種位置關(guān)系::(1)切線的判定(判定定理).經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線.(2)切線的性質(zhì)(定理):圓的切線垂直于過切點(diǎn)的半徑.(3)切線長定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等,這一點(diǎn)和圓心的連線平分兩條切線的夾角.3.主要輔助線:作過切點(diǎn)的半徑
2025-04-30 18:20
【總結(jié)】 九年級下冊《三角形的內(nèi)切圓》說課稿 一、教材分析 1、教材的地位與作用 本節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了切線的判定與性質(zhì)的基礎(chǔ)上,通過求作三角形內(nèi)最大圓的問題引出三角形的內(nèi)切圓的概念。學(xué)生通...
2025-04-03 05:12
【總結(jié)】初中數(shù)學(xué)資源網(wǎng)切線長與三角形的內(nèi)切圓初中數(shù)學(xué)資源網(wǎng)?⊙O上有一點(diǎn)A,你能過點(diǎn)A點(diǎn)作出⊙O的切線嗎?畫一畫●O●A?⊙O外有一點(diǎn)P,你還能過點(diǎn)P作出⊙O的切線嗎?●O●P初中數(shù)學(xué)資源網(wǎng)。PA
2025-10-10 11:57
【總結(jié)】1、確定一個(gè)圓的位置與大小的條件是什么?①圓心與半徑2、敘述角平分線的性質(zhì)與判定性質(zhì):角平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等.判定:到這個(gè)角的兩邊距離相等的點(diǎn)在這個(gè)角的平分線上.3、下圖中△ABC與圓O的關(guān)系?△ABC是圓O的內(nèi)接三角形;圓O是△ABC的外接圓圓心O點(diǎn)叫△ABC的外心或②不在同一直線
2024-12-07 23:43
【總結(jié)】如圖是一塊三角形木料,木工師傅要從中裁下一塊圓形用料,怎樣才能使裁下的圓的面積盡可能大呢?ABC·O,在圓O上任取一點(diǎn)A,過點(diǎn)A畫圓O的切線PO2、如圖,D、E、F在圓O上,分別過點(diǎn)D、E、F作圓O的切線。3條切線兩兩相交于點(diǎn)A、B、C·ODEF.
【總結(jié)】三角形的內(nèi)切圓(一)提出問題如圖,你能否在△ABC中畫出一個(gè)圓?畫出一個(gè)最大的圓?想一想,怎樣畫?ABC例1作圓,使它和已知三角形的各邊都相切.ABCIMND(1)作圓的關(guān)鍵是什么?提出以下幾個(gè)問題進(jìn)行討論:(2)假設(shè)⊙I是所求作的圓,
2024-12-07 13:04
【總結(jié)】一、教學(xué)目的和多邊形的內(nèi)切圓、圓的外切三角形和圓的外切多邊形、三角形的內(nèi)心概念,掌握三角形內(nèi)切圓的作法。。二、教學(xué)重點(diǎn)、難點(diǎn)重點(diǎn):三角形內(nèi)切圓的作法、三角形的內(nèi)心與性質(zhì)。難點(diǎn):三角形與圓的位置關(guān)系中的“內(nèi)”與“外”、“接”與“切”四個(gè)概念的理解和運(yùn)用。三、教學(xué)過程復(fù)習(xí)提問的條件是什么?、
2024-12-01 04:14
【總結(jié)】一、復(fù)習(xí)提問:敘述角平分線的性質(zhì)定理和判定定理在角平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等到一個(gè)角的兩邊的距離相等的點(diǎn),在這個(gè)角的平分線上提出問題:從一塊三角形的材料上截下一塊圓形的用料,怎樣才能使圓的面積盡可能最大呢?作圓,使它和已知三角形的各邊都相切已知:△ABC求作:和△A
2024-11-30 06:43
【總結(jié)】三角形的內(nèi)切圓教學(xué)目的:1.使學(xué)生掌握三角形的內(nèi)切圓的作法.2.使學(xué)生掌握三角形內(nèi)心的定義和性質(zhì).教學(xué)的重點(diǎn)和難點(diǎn):三角形的內(nèi)切圓的作法和三角形的內(nèi)心的應(yīng)用即是重點(diǎn),又是難點(diǎn).教學(xué)過程:一、復(fù)習(xí)與提問(學(xué)生回答)角的平分線的性質(zhì)定理和判定定理二、講授新課1.
2024-12-07 23:37
【總結(jié)】三角形外接圓半徑的求法及應(yīng)用方法一:R=ab/(2h)三角形外接圓的直徑等于兩邊的乘積除以第三邊上的高所得的商。AD是△ABC的高,AE是△ABC的外接圓直徑.求證AB·AC=AE·AD.證:連接AO并延長交圓于點(diǎn)E,連接BE,則∠ABE=90°.∵∠E=∠C,∠ABE=∠ADC=90°
2025-08-05 00:14
【總結(jié)】4、5三角形的內(nèi)切圓【知識鏈接】1、確定圓的條件有哪些?2、什么是角平分線?角平分線有哪些性質(zhì)?3、左圖中△ABC與⊙O有什么關(guān)系?△ABC是⊙O的三角形;⊙O是△ABC的圓圓心O點(diǎn)叫△ABC的心?!緦W(xué)習(xí)目標(biāo)】1、通過作圖操作,經(jīng)歷三角形
2024-12-05 07:26
【總結(jié)】提出問題:從一塊三角形的材料上截下一塊圓形的用料,怎樣才能使圓的面積盡可能最大呢?作圓:使它和已知三角形的各邊都相切已知:△ABC求作:和△ABC的各邊都相切的圓ABCOMNDO就是所求的圓。作法:1、作∠B,∠C的平分線BM和CN,交點(diǎn)為O2、過點(diǎn)O作OD
【總結(jié)】 《三角形的內(nèi)切圓》同步提升練習(xí) 一、選擇題 1.下列命題正確的是() A.三角形的內(nèi)心到三角形三個(gè)頂點(diǎn)的距離相等 B.三角形的內(nèi)心不一定在三角形的內(nèi)部 C.等邊三角形的內(nèi)心,外心重合 ...
2024-12-07 00:49
【總結(jié)】 九年級數(shù)學(xué)《三角形的內(nèi)切圓》評課稿 本節(jié)課教學(xué)層次分明,教學(xué)過程教流暢,較好地體現(xiàn)了學(xué)生的主體性,是一節(jié)比較成功的公開課。 一、概念的引入上體現(xiàn)了解決“從何來”的問題,周老師用怎樣從一塊...
2025-04-03 12:25