【總結(jié)】離散型隨機(jī)變量的方差一般地,若離散型隨機(jī)變量X的概率分布為則稱E(X)=x1p1+x2p2+…+xnpn為X的均值或數(shù)學(xué)期望,記為E(X)或μ.Xx1x2…xnPp1p2…pn其中pi≥0,i=1,2,…,n;p1+p2+…+pn=11、離散型隨機(jī)變量的均值的定義
2024-11-18 08:45
【總結(jié)】離散型隨機(jī)變量的期望1、什么叫n次獨(dú)立重復(fù)試驗(yàn)?一.復(fù)習(xí)其中0<p<1,p+q=1,k=0,1,2,...,nP(X=k)=pkqn-kCkn則稱X服從參數(shù)為n,p的二項(xiàng)分布,記作X~B(n,p)一般地,由n次試驗(yàn)構(gòu)成,且每次試驗(yàn)互相獨(dú)立完成,每次試驗(yàn)的結(jié)果僅有兩種對立的狀態(tài),即A與,每次試驗(yàn)中P(A)
2024-11-17 05:48
【總結(jié)】一、教學(xué)目標(biāo):1、知識與技能:了解離散型隨機(jī)變量的方差、標(biāo)準(zhǔn)差的意義,會根據(jù)離散型隨機(jī)變量的分布列求出方差或標(biāo)準(zhǔn)差。2、過程與方法:了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),則Dξ=np(1—p)”,并會應(yīng)用上述公式計(jì)算有關(guān)隨機(jī)變量的方差。3、情感、態(tài)度與價值觀:承前啟后,感悟數(shù)學(xué)與生活的和諧之美
2024-12-03 11:29
【總結(jié)】§2.1.1離散型隨機(jī)變量教學(xué)目標(biāo):知識目標(biāo):;,并能舉出離散性隨機(jī)變量的例子;,并恰當(dāng)?shù)囟x隨機(jī)變量.能力目標(biāo):發(fā)展抽象、概括能力,提高實(shí)際解決問題的能力.情感目標(biāo):學(xué)會合作探討,體驗(yàn)成功,提高學(xué)習(xí)數(shù)學(xué)的興趣.教學(xué)重點(diǎn):隨機(jī)變量、離散型隨機(jī)變量、連續(xù)型隨機(jī)變量的意義奎屯王新敞新疆教
2024-11-19 19:35
【總結(jié)】 第二章 概 率 §1 離散型隨機(jī)變量及其分布列 備課資源參考 教學(xué)建議 ,常與后面將要學(xué)到的隨機(jī)變量的期望與方差結(jié)合在一起進(jìn)行考查. ,難點(diǎn)是準(zhǔn)確求出隨機(jī)變量ξ取相應(yīng)值時的概率. ...
2025-04-03 03:24
【總結(jié)】§2.1.1離散型隨機(jī)變量教學(xué)目標(biāo):知識目標(biāo):;,并能舉出離散性隨機(jī)變量的例子;,并恰當(dāng)?shù)囟x隨機(jī)變量.能力目標(biāo):發(fā)展抽象、概括能力,提高實(shí)際解決問題的能力.情感目標(biāo):學(xué)會合作探討,體驗(yàn)成功,提高學(xué)習(xí)數(shù)學(xué)的興趣.教學(xué)重點(diǎn):隨機(jī)變量、離散型隨機(jī)變量、連續(xù)型隨機(jī)變量的意義教學(xué)難點(diǎn):隨機(jī)變
2024-12-05 06:39
【總結(jié)】§2.3離散型隨機(jī)變量的均值與方差§2.3.1離散型隨機(jī)變量的均值教學(xué)目標(biāo):知識與技能:了解離散型隨機(jī)變量的均值或期望的意義,會根據(jù)離散型隨機(jī)變量的分布列求出均值或期望.過程與方法:理解公式“E(aξ+b)=aEξ+b”,以及“若ξB(n,p),則Eξ=np”.能熟練地應(yīng)用它們求相應(yīng)的
【總結(jié)】§2.3.2離散型隨機(jī)變量的方差教學(xué)目標(biāo):知識與技能:了解離散型隨機(jī)變量的方差、標(biāo)準(zhǔn)差的意義,會根據(jù)離散型隨機(jī)變量的分布列求出方差或標(biāo)準(zhǔn)差。過程與方法:了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),則Dξ=np(1—p)”,并會應(yīng)用上述公式計(jì)算有關(guān)隨機(jī)變量的方差。情感、態(tài)度與價值觀
【總結(jié)】一.隨機(jī)事件:在一定條件下可能發(fā)生也可能不發(fā)生的事件二、隨機(jī)事件的概率一般地,在大量重復(fù)進(jìn)行同一試驗(yàn)時,事件A發(fā)生的頻率總是接近于某個常數(shù),在它附近擺動,這時就把這個常數(shù)叫做事件A的概率,記作P(A)mn知識回顧幾點(diǎn)說明:(
2025-01-06 16:34
【總結(jié)】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》選修2-3《離散型隨機(jī)變量及其分布列-隨機(jī)變量》教學(xué)目標(biāo)?、離散型隨機(jī)變量、連續(xù)型隨機(jī)變量的意義,并能說明隨機(jī)變量取的值所表示的隨機(jī)試驗(yàn)的結(jié)果?2.通過本課的學(xué)習(xí),能舉出一些隨機(jī)變量的例子,并能識別是離散型隨機(jī)變量,還是連續(xù)型隨機(jī)變量?教學(xué)重點(diǎn):隨機(jī)變量、離散
2024-11-24 16:59
【總結(jié)】ξ可取-1,0,1(且ξ為離散型隨機(jī)變量)解:設(shè)黃球的個數(shù)為n,依題意知道綠球個數(shù)為2n,紅球個數(shù)為4n,盒中球的總數(shù)為7n。p10-1(2)并分別求這三種情況下的概率例1一盒中放有大小相同的紅色、綠色、黃色三種小球,已知紅球個數(shù)是綠球個數(shù)的兩倍,黃球個數(shù)是綠球的一半,現(xiàn)從該盒中隨機(jī)取出一個球,
2024-11-09 12:29
【總結(jié)】離散型隨機(jī)變量的分布列問題導(dǎo)學(xué)一、離散型隨機(jī)變量的分布列活動與探究1某商店試銷某種商品20天,獲得如下數(shù)據(jù):日銷售量(件)0123頻數(shù)1595試銷結(jié)束后(假設(shè)該商品的日銷售量的分布規(guī)律不變),設(shè)某天開始營業(yè)時有該商品3件,當(dāng)天營業(yè)結(jié)束后檢查存貨,若發(fā)現(xiàn)存量少于2件,則當(dāng)天進(jìn)貨補(bǔ)充至3件,否則不進(jìn)
2024-11-28 00:03
【總結(jié)】選修2-3第二章第2課時一、選擇題1.已知隨機(jī)變量X的分布列為:P(X=k)=12k,k=1、2、?,則P(2<X≤4)=()A.316B.14C.116D.516[答案]A[解析]P(2<X≤4)=P(X=3)+P(X=4)=12
2024-12-05 06:40
【總結(jié)】§2.3.2離散型隨機(jī)變量的方差教學(xué)目標(biāo):知識與技能:了解離散型隨機(jī)變量的方差、標(biāo)準(zhǔn)差的意義,會根據(jù)離散型隨機(jī)變量的分布列求出方差或標(biāo)準(zhǔn)差。過程與方法:了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),則Dξ=np(1—p)”,并會應(yīng)用上述公式計(jì)算有關(guān)隨機(jī)變量的方差。情感、態(tài)度與價值觀:
2024-12-05 06:38