【總結(jié)】 三角形的內(nèi)切圓 一、選擇題 1.如圖K-50-1所示,已知△ABC的內(nèi)切圓⊙O與各邊分別相切于點D,E,F(xiàn),那么點O是△DEF的( ) A.三條中線的交點...
2024-12-04 22:35
【總結(jié)】如圖是一塊三角形木料,木工師傅要從中裁下一塊圓形用料,怎樣才能使裁下的圓的面積盡可能大呢?ABCABC三角形的外接圓在實際中很有用,但還有用它不能解決的問題.如ABCM已知:△ABC(如圖)求作:和△ABC的各邊都相切的圓作法:1.作∠ABC、∠A
2024-11-30 05:27
【總結(jié)】三角形的內(nèi)切圓◆基礎(chǔ)訓(xùn)練1.如圖1,⊙O內(nèi)切于△ABC,切點為D,E,F(xiàn).已知∠B=50°,∠C=60°,連結(jié)OE,OF,DE,DF,那么∠EDF等于()A.40°B.55°C.65°D.70°
2024-11-15 20:19
【總結(jié)】提出問題:從一塊三角形的材料上截下一塊圓形的用料,怎樣才能使圓的面積盡可能最大呢?作圓:使它和已知三角形的各邊都相切已知:△ABC求作:和△ABC的各邊都相切的圓ABCOMNDO就是所求的圓。作法:1、作∠B,∠C的平分線BM和CN,交點為O2、過點O作OD
2024-12-07 23:43
【總結(jié)】三角形的內(nèi)切圓如圖是一塊三角形木料,木工師傅要從中裁下一塊圓形用料,怎樣才能使裁下的圓的面積盡可能大呢?ABC三角形的內(nèi)切圓ABC和三角形各邊都相切的圓叫三角形的內(nèi)切圓三角形叫圓的外切三角形問題1:作圓的關(guān)鍵是什么?問題2:怎樣確定圓心的位置?問題
2024-11-19 06:23
【總結(jié)】三角形的內(nèi)切圓湘教版九年級下冊1、確定圓的條件是什么?(1).圓心與半徑2、敘述角平線的性質(zhì)定理與判定定理。性質(zhì):角平線上的點到這個角的兩邊的距離相等。判定:到這個角的兩邊距離相等的點在這個角的平分線上。(2).不在同一直線上的三點(1)△ABC是圓O的內(nèi)接三角形;(2)圓O是△ABC的外接圓(3)圓
2025-07-25 14:49
【總結(jié)】三角形的內(nèi)切圓教學(xué)目的:1.使學(xué)生掌握三角形的內(nèi)切圓的作法.2.使學(xué)生掌握三角形內(nèi)心的定義和性質(zhì).教學(xué)的重點和難點:三角形的內(nèi)切圓的作法和三角形的內(nèi)心的應(yīng)用即是重點,又是難點.教學(xué)過程:一、復(fù)習(xí)與提問(學(xué)生回答)角的平分線的性質(zhì)定理和判定定理二、講授新課
2024-11-18 16:03
【總結(jié)】4、5三角形的內(nèi)切圓【知識鏈接】1、確定圓的條件有哪些?2、什么是角平分線?角平分線有哪些性質(zhì)?3、左圖中△ABC與⊙O有什么關(guān)系?△ABC是⊙O的三角形;⊙O是△ABC的圓圓心O點叫△ABC的心。【學(xué)習(xí)目標(biāo)】1、通過作圖操作,經(jīng)歷三角形
2024-12-05 07:26
【總結(jié)】BCA]MNOBCAMNO三角形的內(nèi)切圓教學(xué)目標(biāo):1、通過作圖操作,經(jīng)歷三角形內(nèi)切圓的產(chǎn)生過程;2、通過作圖和探索,體驗并理解三角形內(nèi)切圓的性質(zhì);3、類比三角形內(nèi)切圓與三角形外接圓,進一步理解三角形內(nèi)心和外心所具有的性質(zhì);4、通過引例和例1的教學(xué),培養(yǎng)學(xué)生解決實際問題的能力和應(yīng)用數(shù)學(xué)的意識;
2024-12-04 17:18
【總結(jié)】三角形的內(nèi)切圓高臺縣二中張維忠如圖是一塊三角形木料,木工師傅要從中裁下一塊圓形用料,怎樣才能使裁下的圓的面積盡可能大呢?ABC三角形的內(nèi)切圓ABC和三角形各邊都相切的圓叫三角形的內(nèi)切圓三角形叫圓的外切三角形問題1:作圓的關(guān)鍵是什么?問
2024-11-07 02:32
【總結(jié)】三角形的內(nèi)切圓展示課3種位置關(guān)系::(1)切線的判定(判定定理).經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線.(2)切線的性質(zhì)(定理):圓的切線垂直于過切點的半徑.(3)切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,這一點和圓心的連線平分兩條切線的夾角.3.主要輔助線:作過切點的半徑
2025-04-30 18:20
【總結(jié)】如圖是一塊三角形木料,木工師傅要從中裁下一塊圓形用料,怎樣才能使裁下的圓的面積盡可能大呢?ABC·O,在圓O上任取一點A,過點A畫圓O的切線PO2、如圖,D、E、F在圓O上,分別過點D、E、F作圓O的切線。3條切線兩兩相交于點A、B、C·ODEF.
2024-12-08 04:44
【總結(jié)】www.czsx.com.OBAP三角形的內(nèi)切圓學(xué)習(xí)目標(biāo)1、了解切線長的概念.了解三角形的內(nèi)切圓、三角形的內(nèi)心等概念。2、理解切線長定理,并能熟練運用切線長定理進行解題和證明(重點)3、會作已知三角形的內(nèi)切圓(重點)教學(xué)流程一、課前延伸1、只限于演的有幾種位置關(guān)系?分貝是那幾種?
2024-11-19 23:47
【總結(jié)】初中數(shù)學(xué)資源網(wǎng)切線長與三角形的內(nèi)切圓初中數(shù)學(xué)資源網(wǎng)?⊙O上有一點A,你能過點A點作出⊙O的切線嗎?畫一畫●O●A?⊙O外有一點P,你還能過點P作出⊙O的切線嗎?●O●P初中數(shù)學(xué)資源網(wǎng)。PA
2024-10-19 11:57
【總結(jié)】三角形外接圓半徑的求法及應(yīng)用方法一:R=ab/(2h)三角形外接圓的直徑等于兩邊的乘積除以第三邊上的高所得的商。AD是△ABC的高,AE是△ABC的外接圓直徑.求證AB·AC=AE·AD.證:連接AO并延長交圓于點E,連接BE,則∠ABE=90°.∵∠E=∠C,∠ABE=∠ADC=90°
2025-08-05 00:14