【總結(jié)】排列組合練習(xí)題用2,6,8三個數(shù)能組成哪幾個不同的兩位數(shù)?用0,3,9三個數(shù)能組成哪幾個不同的兩位數(shù)?用1,4,7能組成哪幾個不同的三位數(shù)?用3,6,9能組成哪幾個不同的三位數(shù)?排列組合練習(xí)題由3,5,0,6共四張卡片,你能擺出最大的兩位數(shù)和最小的兩位數(shù)嗎?它們的和是(),差是().有4,6,8
2025-08-05 08:17
【總結(jié)】排列組合方法一解決排列組合問題的幾種思想1.主元思想某單位安排7位工作人員在10月1日至10月7日值班,每人值班1天,其中甲乙2人都不安排在10月1日和10月7日,則不同安排方法有多少種?解析先排甲乙,有5×4=20種再排其他5人,有5×4×3×2×1=120種共120
2025-08-18 16:59
【總結(jié)】問題1把abcd平均分成兩組有_____多少種分法?結(jié)論:平均分成的組,不管它們的順序如何,都是一種情況,所以分組后要除以,即m!,其中m表示組數(shù)。abcdacbdadbccdbdbcadacab這兩個在分組時只能算一個mmA均分不安排工作的問題例1:12本不
2025-08-05 07:24
【總結(jié)】例1,7名學(xué)生站成一排,甲已必須站在一起,有多少種方法?捆綁法:要求某幾個元素必須排在一起的問題,可以用捆綁法來解決問題。即將需要相鄰的元素合并為一個元素,再與其他元素一起作排列,同時要注意合并元素內(nèi)部也可以做排列。一般地:n個人站成一排,其中某m個人相鄰,可用“捆綁法”解決,共有種排法插入法:對
2024-11-09 13:22
【總結(jié)】組合(2)2022/8/302④要明確堆的順序時,必須先分堆后再把堆數(shù)當(dāng)作元素個數(shù)作全排列.②若干個不同的元素局部“等分”有m個均等堆,要將選取出每一個堆的組合數(shù)的乘積除以m!①若干個不同的元素“等分”為m個堆,要將選取出每一個堆的組合數(shù)的乘積除以m!③非均分堆問題,只要按比例取出分完再用乘法原理作積
2025-08-05 16:59
【總結(jié)】解排列問題的常用技巧解排列問題的常用技巧解排列問題,首先必須認真審題,明確問題是否是排列問題,其次是抓住問題的本質(zhì)特征,靈活運用基本原理和公式進行分析解答,同時,還要注意講究一些基本策略和方法技巧,使一些看似復(fù)雜的問題迎刃而解。下面就不同的題型介紹幾種常用的解題技巧??偟脑瓌t—合理分類和準(zhǔn)確分步
2025-07-23 12:24
【總結(jié)】1排列組合習(xí)題課2一復(fù)習(xí)引入二新課講授排列組合問題在實際應(yīng)用中是非常廣泛的,并且在實際中的解題方法也是比較復(fù)雜的,下面就通過一些實例來總結(jié)實際應(yīng)用中的解題技巧.3從n個不同元素中,任取m個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列.:從n
2025-08-05 06:17
【總結(jié)】排列組合復(fù)習(xí)計數(shù)的基本原理排列組合排列數(shù)Anm公式組合數(shù)Cnm公式組合數(shù)的兩個性質(zhì)應(yīng)用本章知識結(jié)構(gòu)分類計數(shù)原理完成一件事,有n類辦法,在第1類辦法中,有m1種不同的方法,在第2類辦法中,有m2種不同的方法……在第n類辦法中,
2024-11-11 05:50
【總結(jié)】引例問題1從甲、乙、丙3名同學(xué)中選出2名參加某天的一項活動,其中1名同學(xué)參加上午的活動,1名同學(xué)參加下午的活動,有多少種不同的方法?第1步,確定參加上午活動的同學(xué),從3人中任選1人有3種方法;第2步,確定參加下午活動的同學(xué),只能從余下的2人中選,有2種方法.
2024-11-11 09:01
【總結(jié)】第一篇:排列組合典型例題 典型例題一 例1用0到9這10個數(shù)字.可組成多少個沒有重復(fù)數(shù)字的四位偶數(shù)? 分析:這一問題的限制條件是:①沒有重復(fù)數(shù)字;②數(shù)字“0”不能排在千位數(shù)上;③個位數(shù)字只能是0...
2024-10-21 11:00
【總結(jié)】排列組合常見題型及解題策略一.可重復(fù)的排列求冪法:重復(fù)排列問題要區(qū)分兩類元素:一類可以重復(fù),另一類不能重復(fù),把不能重復(fù)的元素看作“客”,能重復(fù)的元素看作“店”,則通過“住店法”可順利解題,在這類問題使用住店處理的策略中,關(guān)鍵是在正確判斷哪個底數(shù),哪個是指數(shù)【例1】(1)有4名學(xué)生報名參加數(shù)學(xué)、物理、化學(xué)競賽,每人限報一科,有多少種不同的報名方法?(2)有4名學(xué)生參加爭奪數(shù)學(xué)、
2025-08-04 18:28
【總結(jié)】排列組合復(fù)習(xí)課教學(xué)設(shè)計------龍巖二中郭小峰排列組合復(fù)習(xí)課一.教學(xué)內(nèi)容分析:、組合都是研究事物在某種給定的模式下所有可能的配置的數(shù)目問題,它們之間的主要區(qū)別在于是否要考慮選出元素的先后順序,不需要考慮順序的是組合問題,需要考慮順序的是排列問題,排列是在組合的基礎(chǔ)上對入選的元素進行排隊,因此,分析解決排列組合問題的基本思維是“先組,后排”.,要注意四點:(1)
2025-05-01 04:21
【總結(jié)】.公式P是指排列,從N個元素取R個進行排列。公式C是指組合,從N個元素取R個,不進行排列。N-元素的總個數(shù)R參與選擇的元素個數(shù)!-階乘,如????9!=9*8*7*6*5*4*3*2*1從N倒數(shù)r個,表達式應(yīng)該為n*(n-1)*(n-2)..(n-r+1);?????&
2025-07-26 05:35
【總結(jié)】排列組合試題精選一、選擇題1、如圖,是中國西安世界園藝博覽會某區(qū)域的綠化美化示意圖,其中A、B、C、D是被劃分的四個區(qū)域,現(xiàn)有6種不同顏色的花,要求每個區(qū)域只能栽同一種花,允許同一顏色的花可以栽在不同的區(qū)域,但相鄰的區(qū)域不能栽同一色花,則不同的栽種方法共有(???)種。A.120?????
2025-03-25 02:37
【總結(jié)】§排列、組合及其應(yīng)用要點梳理(1)排列的定義:從n個的元素中取出m(m≤n)個元素,按照一定的排成一列,叫做從n個不同的元素中取出m個元素的一個排列.(2)排列數(shù)的定義:從n個不同的元素中取出m(m≤n)個元素的的個數(shù)叫做從
2025-08-05 19:06