【總結(jié)】正文:探索勾股定理說課稿 探索勾股定理說課稿 探索勾股定理說課稿1 一、教材分析 (一)教材地位 這節(jié)課是九年制義務(wù)教育初級(jí)中學(xué)教材北師大版七年級(jí)第二章第一節(jié)《探索勾股定理》第一課時(shí),勾股定...
2025-10-26 23:02
【總結(jié)】勾股定理(2)試一試?剪四個(gè)與圖完全相同的直角三角形,然后將它們拼成如圖所示的圖形.?大正方形的面積可以表示為____,又可以表示為____________.?對(duì)比兩種表示方法,看看能不能得到勾股定理的結(jié)論.??例題如圖為了求出湖兩岸的A、B兩點(diǎn)之間的距離,一個(gè)觀測(cè)者在點(diǎn)C設(shè)樁,使三角
2024-12-08 01:52
【總結(jié)】勾股定理的證明(1)baca2+b2=c2曲靖石林育才學(xué)校教師:楊賓勾股定理(gou-gutheorem)直角三角形兩直角邊的平方和等于斜邊的平方。如果直角三角形兩直角邊分別為a、b,斜邊為c,那么222abc??abc一、學(xué)習(xí)目標(biāo)?1、了解割補(bǔ)的方法
2024-11-30 08:42
【總結(jié)】探索勾股定理(2)baca2+b2=c2利用拼圖來驗(yàn)證勾股定理:cab1、準(zhǔn)備四個(gè)全等的直角三角形(設(shè)直角三角形的兩條直角邊分別為a,b,斜邊為c);2、你能用這四個(gè)直角三角形拼成一個(gè)正方形嗎?拼一拼試試看3、你拼的正方形中是否含有以斜邊c的正方形?4、你能否就你拼出的圖說明a2
【總結(jié)】勾股定理逆定理鐵山學(xué)校張宏財(cái)?一、教材分析?二、教學(xué)過程?三、說教法、學(xué)法與教學(xué)手段?四、教學(xué)反思一、教材分析?(一)本節(jié)課在教材的地位與作用?本節(jié)課是勾股定理的逆定理。它是在學(xué)過勾股定理的基礎(chǔ)上進(jìn)行的。教科書以古埃及人的作圖為出發(fā)點(diǎn),讓學(xué)生畫出一些兩邊的平方和
2024-11-22 01:51
【總結(jié)】勾股定理(gou-gutheorem)直角三角形兩直角邊的平方和等于斜邊的平方。如果直角三角形兩直角邊分別為a、b,斜邊為c,那么222abc??abc探索勾股定理(2)baca2+b2=c2利用拼圖來驗(yàn)證勾股定理:cab1、準(zhǔn)備四個(gè)全等的直角三角形(設(shè)直角三
2024-11-30 02:44
【總結(jié)】baca2+b2=c2ABC圖2—1(1)觀察圖2—1:正方形A中含有個(gè)小方格,即A的面積是個(gè)單位面積;正方形B中含有個(gè)小方格,即B的面積是個(gè)單位面積;正方形C中含有個(gè)小方格,即C的面積是
2024-11-28 01:30
【總結(jié)】探索勾股定理北師大版八年級(jí)數(shù)學(xué)(上冊(cè))玉溪市新平縣新化中學(xué)周健設(shè)計(jì)玉溪市新平縣新化中學(xué)周健制作ABCABC(圖中每個(gè)小方格代表一個(gè)單位面積)圖1-1圖1-2(1)觀察圖1-1正方形A中含有個(gè)小方格,即A的面積是
2024-11-30 08:47
【總結(jié)】勾股定理勾股定理(畢達(dá)哥拉斯定理)(gou-gutheorem)如果直角三角形兩直角邊分別為a,b,斜邊為c,那么222cba??即直角三角形兩直角邊的平方和等于斜邊的平方.ac勾弦b股ACB22bca??22c
2025-01-17 16:28
【總結(jié)】第一篇:焦麗麗探索勾股定理教學(xué)反思 勾股定理,愛拼進(jìn)行時(shí) ——探索勾股定理(第一課時(shí))教學(xué)反思 焦麗麗 我國(guó)是最早了解勾股定理的國(guó)家之一。早在三千多年前,周朝數(shù)學(xué)家商高就提出,將一根直尺折成一...
2024-11-19 02:31
【總結(jié)】第一篇:探索勾股定理1教學(xué)設(shè)計(jì) 探索勾股定理第1課時(shí)教學(xué)設(shè)計(jì) 一、教學(xué)目標(biāo) (1知識(shí)與技能目標(biāo):用數(shù)格子(或割、補(bǔ)等)的方法體驗(yàn)勾股定理的探索過程,)會(huì)初步運(yùn)用勾股定理進(jìn)行簡(jiǎn)單的計(jì)算和實(shí)際運(yùn)用。...
2024-11-19 01:14
【總結(jié)】探索勾股定理(第1課時(shí))一、情境引入會(huì)標(biāo)中央的圖案是趙爽弦圖,它與“勾股定理”有關(guān),數(shù)學(xué)家曾建議用“勾股定理”的圖來作為與“外星人”聯(lián)系的信號(hào).2021年世界數(shù)學(xué)家大會(huì)在我國(guó)北京召開,下圖是本屆數(shù)學(xué)家大會(huì)的會(huì)標(biāo):探究活動(dòng)一:觀察下面地板磚示意圖:二、探索發(fā)現(xiàn)勾股定理
2024-12-08 10:53
【總結(jié)】勾股定理的逆定理第十七章勾股定理第1課時(shí)一、情境引入?據(jù)說,幾千年前的古埃及人就已經(jīng)知道,在一根繩子上連續(xù)打上等距離的13個(gè)結(jié),然后,用釘子將第1個(gè)與第13個(gè)結(jié)釘在一起,拉緊繩子,再在第4個(gè)和第8個(gè)結(jié)處各釘上一個(gè)釘子,如圖。這樣圍成的三角形中,最長(zhǎng)邊所對(duì)的角就是直角。知道為什么嗎?也就意味著,如果圍成三
2024-12-07 17:29
【總結(jié)】勾股定理的逆定理人教版數(shù)學(xué)八年級(jí)下冊(cè).重點(diǎn)、互逆定理難點(diǎn)3.能靈活運(yùn)用勾股定理的逆定理解決實(shí)際問題.重點(diǎn)學(xué)習(xí)目標(biāo)(1)在Rt△ABC,∠C=90°,a=8,b=15,則c=.(2)在Rt△ABC,∠B=90
2025-07-18 12:59
【總結(jié)】探索勾股定理(第1課時(shí))一、情境引入會(huì)標(biāo)中央的圖案是趙爽弦圖,它與“勾股定理”有關(guān),數(shù)學(xué)家曾建議用“勾股定理”的圖來作為與“外星人”聯(lián)系的信號(hào).2020年世界數(shù)學(xué)家大會(huì)在我國(guó)北京召開,下圖是本屆數(shù)學(xué)家大會(huì)的會(huì)標(biāo):探究活動(dòng)一:觀察下面地板磚示意圖:二、探索發(fā)現(xiàn)勾股定理
2025-10-31 21:04