【正文】
1 多晶硅工藝中英文對(duì)照表 硅烷 (SiH4): Silane 二氧化硅 (SiO2) : Silica 一氯三氫硅 (SiH3Cl): Monochlorosilane 二氯二氫硅 (SiH2Cl2): Dichlorosilane(DCS) 三氯氫硅 (SiHCl3): Trichlorosilane(TCS) 四氯化硅 (SiCl4): Silicon Tetrachloride(STC) 冶金級(jí)硅: MetallurgicalGrade Silicon(MGSi) 多晶硅: Polycrystalline Silicon(Polysilicon) 單晶硅: Single Crystal(Crystal) 硅樹脂: Silicone 硅油: Silicon Oil 載氣: Carrier Gas 粉末二氧化硅 : Fumed Silica 光纖: Fiber optil 外延層: Epitaxial Layer 非晶 (無定形 )層: Amorphous Layer 多晶層: Polysilicon Layer 化學(xué)汽相沉積工藝: Chemicalvapordeposition processes 棒狀、塊狀多晶硅: Rod、 Chunk Polysilicon 少數(shù)載流子壽命: Minority Carrir lifetime 2 晶格: Crystallographic Lattice 施主雜質(zhì): Dopant impurity 受主雜質(zhì): Accept impurity 氧: Oxygen 碳: Carbon 重金屬: Heavy metals 蒸汽壓: Vapor Pressure 密度: Density 熱容: Heat Capacity 自由能: Free Energy 標(biāo)準(zhǔn)焓: Standart Enthalpy 標(biāo)準(zhǔn)熵: Standart Entropy 表面張力: Surface Tension 粘度: Viscosity 熱導(dǎo)率: Thermal Conductivity 轉(zhuǎn)換效率: Conversion Efficiency 沉積速率: Deposition Rate 催化劑: Catalytic agent 偶聯(lián)劑: Coupling agent 表壓(磅 /平方英吋) Psig:( pounds per square inch gauge) 蒸發(fā): Evaporate 溶解: Dissolve 3 濃縮、凝縮: Condensation 濃度、濃縮: Concentration 吸收: Absorb 吸附: Adsoption 蒸餾: Dislillation 置換: Replacement 捕獲、收集: Capture 分解: Depose 分裂: Dissociation 污染: Contaminate 腐蝕性: Corrosive 汽態(tài)吸收: Gaseous Absorption 全閉路循環(huán): Fully Closedloop 水解反應(yīng): Hydrolysis Reaction 氫氣中 TCS 的分子比率: Mole ration of TCS in H2 著火: Ignition 發(fā)煙: Smoke 起火: Fire 燃燒: Burn 爆炸: Explosion 活性碳柱: Activated Carbon Column 薄霧淋洗塔: Falling film tower 4 流化床反應(yīng)爐 (FBR): Fluidied Bed Reactor 石英鐘罩反應(yīng)爐: Quartz bell jar reactor 金屬鐘罩反應(yīng)爐: Metal bell jar reactor 5 氯硅烷主要反應(yīng)式: SiO2+2C→ Si+2CO (由石英石制備工業(yè)硅 ) Si+3HCl→ SiHCl3+H2 (沸騰氯化制 取三氯氫硅 ) 3SiCl4+2H2+Si+Cu 催化劑 → 4SiHCl3(~800℃ 3Mpa 約 37%的轉(zhuǎn)化率 ) (四氯化硅氫化生成三氯氫硅 ) SiHCl3+H2→ Si+3HCl(~1375K) (三氯氫硅氫還原制備多晶硅 ) SiHCl3+HCl→ SiCl4+H2 3 SiHCl3→ Si+2 SiCl4+HCl+ H2 2 SiHCl3→ SiH2Cl2+ SiCl4 2 SiH2Cl2→ SiH3Cl+ SiHCl3 硅烷( SiH4 )的四種制備方法 由四氯化硅與氫化鋰反應(yīng) 4LiH+ SiCl4→ SiH4+4LiCl 由硅鎂合金與氯化氨反應(yīng) Mg2Si+4NH4Cl→ SiH4+2MgCl+4NH3 由一氯三氫硅分解 2 SiH3Cl→ SiH4+ SiH2Cl2 Ethyl 公司早期開發(fā)的硅烷制備工藝: 它是用過磷酸鈣肥料工業(yè)的副產(chǎn)品( a byproduct from the superphosphate fertilizer industry)氟硅酸( H2SiF6)作原料,主要的反應(yīng)式為: 6 H2SiF6 +H2SO4→ SiF4+2HF SiF4+LiH→ SiH4+4LiF(在二苯 基乙醚里, 525K) LiH是用金屬鋰在礦物油里與氫反應(yīng)而制得,收率可達(dá) 90% 7 Handbook of Semiconductor Silicon Technology 序 Semiconductor silicon has bee the most important and characteristic material of our agethe silicon age. It has achieved this distinction with a rather modest volume of production as pared to that of other basic industrial materials. For example, in 1989, about 6000 metric tons of polysilicon were produced worldwide for silicon crystal growth, resulting in 3000 tons of crystal produced in the United States, Japan, and Europe. This silicon crystal was converted to approximately 1500 million square inches of wafer, or about 90 million individual wafers used for integrated circuit and discrete device production. For parison, the annual worldwide production of steel and aluminum amounts to hundreds of thousands of tons. 半導(dǎo)體硅材料已成為我們這個(gè)時(shí)代 硅時(shí)代最重要和最有代表性的材料,雖然它的產(chǎn)量還不夠大,但其重要性卻引人矚目。例如,在 1989年,全球生產(chǎn)約 6000噸用于生產(chǎn)單晶的多晶硅,而僅在美國、日本和歐洲就以此生產(chǎn)了 3000 噸單晶硅。然后,這些單晶硅又轉(zhuǎn)換成了大約 150億平方英吋硅片,或大約 9000 萬片分別用于 IC 和分立器件的各類硅片,這些硅片的作用可與全 球每年成百上千噸的鋼鐵和鋁材相比擬。 In spite of its relatively small volume, the impact of silicon production is multiplied manifold by the device and electronic systems that are based on its properties. There have been many attempts to fined improved materials with “better” properties than silicon, but candidates 8 such as sapphire, silicon carbide, diamond and Ⅲ Ⅴ materials all lack some essential ingredients for manufacturing in quantity . Examples of these missing ingredients include: ease of growing large perfect crystals, freedom from extended and point defects, existence of a native oxide, or other essential properties, many of wich are discussed in this book. 盡管它相對(duì)量較小,但是硅材料的影響力卻很巨大,它通過其后的分立器件和電子系統(tǒng)( the device and electronic system)的固有特性發(fā)揮出巨大的倍增效用( multplied manifold)。近來,人 們也付出巨大努力去尋找性能優(yōu)于硅的其它改進(jìn)型材料( impoved materials) ,諸如蘭寶石( (sapphire)、碳化硅( silicon carbide)、金剛石( diamond)以及 Ⅲ Ⅴ 族化合物( Ⅲ Ⅴ materiars) ,但這些材料都缺乏大生產(chǎn)方面的一些基本要素,這些要素包括:是否易于生長大尺寸的完美單晶( ease of growing large perfect crystal)、產(chǎn)品外延的自由度( freedom from extended)、點(diǎn)缺陷( point defects)、有自氧化 物生成( existence of a native oxide)或其它一些基本特性等,這在本手冊(cè)中將會(huì)陸續(xù)討論。 Basic information about siliconhow it is made, and its important physical, chamical and mechanical propertiesis hard to find,and one of the motives for this volume is to make fundamental information available in handbook form. This also absolves the authors from having to include the relevant papers in their field that were published in the last twentyfour hours. 有關(guān)硅的一些基礎(chǔ)資料 比如如何制備以及它們的一些重要的物理、化學(xué)和機(jī)械特性一時(shí)難于查找,本手冊(cè)的目的之一是匯編了這些方面的一些有用的基本信息,本手冊(cè)在出版前的 24 小時(shí) 里,作者還是刪去了應(yīng)該包括在其中的相關(guān)章節(jié) (This also absolves the authors from having to include the relevant papers in their field that were published in the last twentyfour hours.)。 Early work in silicon science and technology was excellent, as evidenced by the fact the original crystal growth process is still used in manufacturing today. That process was developed at Bell Laboratories by Teal and Bu