freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

libin畢業(yè)論文基于matlab神經(jīng)網(wǎng)絡(luò)仿真(已修改)

2025-07-05 19:38 本頁面
 

【正文】 1 / 44摘 要隨著人工神經(jīng)網(wǎng)絡(luò)的研究和應(yīng)用越來越廣泛,誤差反向傳播算法(BP 算法)的提出,成功地解決了求解非線性連續(xù)函數(shù)的多層前饋神經(jīng)網(wǎng)絡(luò)權(quán)值調(diào)整問題,BP 神經(jīng)網(wǎng)絡(luò)如今成為最廣泛使用的網(wǎng)絡(luò),研究它對探索非線性復(fù)雜問題具有重要意義,而且它具有廣泛的應(yīng)用前景。以 BP 神經(jīng)網(wǎng)絡(luò)為例,討論了 BP 神經(jīng)網(wǎng)絡(luò)及幾種改進BP 神經(jīng)網(wǎng)絡(luò)性能的算法;通過 BP 學習算法的推導和分析得知 BP 網(wǎng)絡(luò)是一種多層前饋網(wǎng)絡(luò),采用最小均方差的學習方式,缺點是僅為有導師訓練,訓練時間長,易限于局部極??;運用 MATLAB 來實現(xiàn)各種 BP 神經(jīng)網(wǎng)絡(luò)的實現(xiàn)的設(shè)計與訓練,比較不同BP 神經(jīng)網(wǎng)絡(luò)的性能,驗證改進 BP 網(wǎng)絡(luò)的優(yōu)勢,得出如何根據(jù)對象選取神經(jīng)網(wǎng)絡(luò)的結(jié)論。關(guān)鍵詞:人工神經(jīng)網(wǎng)絡(luò)、BP 神經(jīng)網(wǎng)絡(luò)、誤差反向傳播算法、MATLAB、仿真2 / 44AbstractWith the artificial neural work of research and application of more and more widely, the error backpropagation algorithm (BP algorithm) is proposed, successfully resolved the continuous function for solving nonlinear multilayer feedforward neural work weights adjustment, BP work has bee now the most widely used works, Study to explore its plicated nonlinear problem has important significance, but also has broad application prospects. BP neural work is discussed and several improvements in the performance of BP neural work algorithm. BP learning algorithm through the derivation and analysis that the BP work is a multilayer feedforward works, the use of leastmeanvariance approach to learning, there is only disadvantage is that the training instructors, training time, limited to local minimum easily. The use of MATLAB to achieve a variety of BP neural work to achieve the design and training, to pare the performance of BP neural work to verify the advantages of improving the BP work, how to draw the object selected in accordance with the conclusions of neural works.Key words: Artificial neural work, BP neural works, error backpropagation algorithm, MATLAB, simulation3 / 44目 錄 ..................................................................5 引言 ..............................................................5 神經(jīng)網(wǎng)絡(luò)概述 ......................................................51.2.1 神經(jīng)網(wǎng)絡(luò)起源 ................................................51.2.2 神經(jīng)網(wǎng)絡(luò)的發(fā)展歷程 ..........................................51.2.3 神經(jīng)網(wǎng)絡(luò)國內(nèi)發(fā)展概況 ........................................61.2.4 神經(jīng)網(wǎng)絡(luò)研究現(xiàn)狀 ............................................7 研究目的、方法和問題(BP 神經(jīng)網(wǎng)絡(luò)) ................................81.3.1 研究目的 ....................................................81.3.2 研究方法 ....................................................81.3.3 研究問題 ....................................................8 神經(jīng)網(wǎng)絡(luò) ..........................................................10 BP 神經(jīng)網(wǎng)絡(luò)相關(guān)原理 ...............................................102.1.1 神經(jīng)元非線性模型 ...........................................102.1.2 有教師監(jiān)督學習 .............................................102.1.3 神經(jīng)元數(shù)學模型 .............................................112.1.4 Delta 學習規(guī)則 ..............................................112.1.5 神經(jīng)元激活函數(shù) .............................................122.1.6 BP 神經(jīng)網(wǎng)絡(luò)收斂準則 .........................................12 BP 神經(jīng)網(wǎng)絡(luò)學習過程描述 ...........................................132.2.1 BP 神經(jīng)網(wǎng)絡(luò)計算模型建立 .....................................132.2.2 BP 神經(jīng)網(wǎng)絡(luò)學習過程描述 .....................................142.2.3 BP 神經(jīng)網(wǎng)絡(luò)方框圖 ...........................................14 BP 神經(jīng)網(wǎng)絡(luò)學習方法 ...............................................142.3.1 BP 神經(jīng)網(wǎng)絡(luò)信號流程 .........................................142.3.2 誤差反向傳播計算 ...........................................152.3.3 BP 神經(jīng)網(wǎng)絡(luò)算法描述 .........................................18 影響因素分析 .....................................................192.4.1 權(quán)值初始值設(shè)置影響分析 .....................................192.4.2 權(quán)值調(diào)整方法影響分析 .......................................192.4.3 激活函數(shù)選擇影響分析 .......................................202.4.4 學習率 η 選擇影響分析 ......................................202.4.5 輸入輸出歸一化影響分析 .....................................212.4.6 其他影響因素分析 ...........................................22 BP 學習算法的改進 .................................................222.5.1 BP 學習算法的優(yōu)缺點 .........................................222.5.2 增加動量項 .................................................232.5.3 彈性 BP 學習算法 ............................................232.5.4 自適應(yīng)學習速率法 ...........................................242.5.5 共軛梯度法 .................................................252.5.6 LevenbergMarquardt 算法 ....................................254 / 44 神經(jīng)網(wǎng)絡(luò)仿真 ......................................................27 仿真平臺 MATLAB...................................................273.1.1 MATLAB 簡介 .................................................273.1.2 仿真平臺的構(gòu)建和策略 .......................................27 仿真實驗 .........................................................283.2.1 BP 神經(jīng)網(wǎng)絡(luò) MATLAB 設(shè)計 ......................................283.2.2 各種 BP 學習算法 MATLAB 仿真 .................................293.2.3 各種算法仿真結(jié)果比較與分析 .................................323.2.4 調(diào)整初 始權(quán)值和閾值的仿真 ...................................333.2.5 其他影響因素仿真 ...........................................35 神經(jīng)網(wǎng)絡(luò)應(yīng)用實例 ..................................................37 實例概述 .........................................................37 網(wǎng)絡(luò)設(shè)計 .........................................................37 網(wǎng)絡(luò)訓練 .........................................................38 網(wǎng)絡(luò)測試 .........................................................39 實例總結(jié) .........................................................40 ...........................................................41 BP 神經(jīng)網(wǎng)絡(luò)研究總結(jié) ...............................................41 神經(jīng)網(wǎng)絡(luò)研究展望 .................................................42致謝 ...................................................................43參考文獻 ...............................................................44附錄 ...................................................................465 / 44 引言隨 著 計 算 機 的 問 世 與 發(fā) 展 , 人 們 設(shè) 法 了 解 人 的 大 腦 , 進 而 構(gòu) 造 具 有 人 類 智 能的 智 能 計 算 機 。 在 具 有 人 腦 邏 輯 推 理 能 力 延 伸 的 計 算 機 戰(zhàn) 勝 人 類 棋 手 的 同 時 引發(fā) 人 們 對 模 擬 人 腦 信 息 處 理 的 人 工 神 經(jīng) 網(wǎng) 絡(luò) 的 研 究 。人 工 神 經(jīng) 網(wǎng) 絡(luò) ( Artificial Neural Networks, ANN) ( 注 : 簡 稱 為 神 經(jīng) 網(wǎng)絡(luò) ) , 一 種 模 仿 動 物 神 經(jīng) 網(wǎng) 絡(luò) 行 為 特 征 , 進 行 分 布 式 并 行 信 息 處 理 的 算
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
公安備案圖鄂ICP備17016276號-1