【總結】第二章方程與不等式(組)10一元二次方程根的判別式及根與系數(shù)的關系目標方向理解并會靈活運用一元二次方程根的判別式,知道根與系數(shù)的關系是本講的目標;運用判別式探討一元二次方程的根的情況,或用它來解決一些相關的幾何、函數(shù)、實際問題是復習的方向.考點聚焦考點一一元二次方程根的判別式考點二一元二次方程的根與
2024-12-07 20:50
【總結】一元二次方程根的判別式第四章;程根的情況.(4)配方、用直接開平方法解方程.(x+)2=-qx2+px+()2=-q+()21、用配方法解一元二次方程的步驟:(1)把原方程化成x2+px+q=0的形式;(2)移項整理得x2+px=-q;(3)在方程x2+px=-q的兩
2025-06-14 12:02
【總結】一元二次方程的根的判別式??????2221532022542032310xxyyxx????????利用公式法解下列方程對于一元二次方程你能談論一下它的根的情況嗎?在什么情況下,一元二次方程有解?有什么樣的解?什么情況下一元二次方程無解?2
2025-11-02 07:48
【總結】課題:一元二次方程的根的判別式執(zhí)教者:東林中學姚燕華用公式法求下列方程的根:溫故而知新一元二次方程??200axbxca????的求根公式是:溫故而知新一元二次方程20(0axbxca????,)的求根公式是如何把
2025-11-03 15:17
【總結】第一頁,編輯于星期六:七點四十九分。,第二頁,編輯于星期六:七點四十九分。,第三頁,編輯于星期六:七點四十九分。,第四頁,編輯于星期六:七點四十九分。,第五頁,編輯于星期六:七點四十九分。,第六頁,編...
2025-10-13 03:54
【總結】12·3一元二次方程的根的判別式說課設計學校:甘肅省蘭州市蘭化第一中學授課教師:宋慶萍說課內(nèi)容:人民教育出版社九年義務教育四年制初中《代數(shù)》第三冊第十二章第三節(jié)“一元二次方程的根的判別式”
2024-11-30 14:01
【總結】我們的理念:一切為了孩子,讓孩子快樂的學習一元二次方程根的判別式及韋達定理常見題型及注意事項一、一元二次方程跟的判別式的常見題型題型1:不解方程,判斷一元二次方程根的情況題型2:證明一元二次方程根的情況求證:無論取何實數(shù),關于的一元二次方程:總有兩個不等實根。
2025-03-24 05:33
【總結】第二章第四課時:一元二次方程根的判別式?要點、考點聚焦?課前熱身?典型例題解析?課時訓練?要點、考點聚焦ax2+bx+c=0(a≠0)根的情況:(1)當Δ>0時,方程有兩個不相等的實數(shù)根;(2)當Δ=0時,方程有兩個相等的實數(shù)根;(3)當Δ<0時,方程無實數(shù)根.,也
2024-11-19 12:04
【總結】 一元二次方程根的判別式 一元二次方程根的判別式授課人 教 學 目 標知識技能 能夠理解一元二次方程根的判別式,并能運用根的判別式進行相關的計算或推理. 數(shù)學思考 ...
2025-04-03 03:33
【總結】第二十一章一元二次方程專題2一元二次方程的根的判別式武漢專版·九年級上冊一、判別方程根的情況1.判斷下列說法:①若a≠0,方程ax2+bx+c=0和方程ax2-bx-c=0中至少有一個方程有實數(shù)根;②若(a+c)2≤b2,則關于x的一元二次方程ax2+bx+c=0必有實數(shù)根;③若b2+4ac>
2025-06-18 08:40
【總結】一元二次方程的根與系數(shù)的關系(一)方程兩個根x1,x2的值兩根的和兩根的積x1x2x1+x23x2-4x-4=02x2+7x-4=06x2+7x-3=05x2-23x+12=0-2-2/34/3-4/31/2-4-7/2-2-3/21
2025-10-28 16:59
【總結】華東師范大學出版社華東師范大學出版社數(shù)學九年級(上)一元二次方程的解法復習回顧只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2,這樣的方程叫做一元二次方程.通??蓪懗扇缦碌囊话阈问剑篴x2+bx+c=0(a≠0)一元一次方程的解法:直接開平方法因式分解法其中a、b、c分別叫做二次項系數(shù)、一次項
2025-08-04 09:47
【總結】一、填空題ax2+bx+c=0(a≠0),則根的判別式為_________;當_________時,方程有兩個不相等的實數(shù)根,當_______時,方程有兩個相等的實數(shù)根,則_______時,方程無實數(shù)根.,判斷方程根的情況,首先將方程(x-2)(x-5)-16=0化成一般形式是_________,再代入判別式為______
2024-11-30 12:38
【總結】一元二次方程的根的判別式(二)二、教學重點、難點、疑點及解決方法1.教學重點:運用判別式求出符合題意的字母的取值范圍.2.教學難點:教科書上的黑體字“一元二次方程ax2+bx+c=0(a≠0),當△>0時,有兩個不相等的實數(shù)根;當△=0時,有兩個相等的實數(shù)根;當△<0時,沒有實數(shù)根”可看作一個定理,書上的“反過來也成立”,實際上是指它的逆
2024-11-28 20:39
【總結】一元二次方程根與系數(shù)的關系授課人長沙市第一中學陳震題1口答1.下列方程的兩根和與兩根積各是多少?⑴.X2-3X+1=0⑵.3X2-2X=2⑶.2X2+3X=0⑷.3X2=1基本知識在使用根與系數(shù)的關系時,應注意:⑴不
2025-10-28 12:07