【總結】觀察:下列不同形狀的三角形,哪些是等腰三角形。(1)(2)(3)(4)等腰三角形;腰;;兩腰的夾角叫頂角,底角。ABCDE圖中,線段AD叫做三角形的高;線段BE叫做三角形的中線
2025-08-16 01:37
【總結】探索·合作·創(chuàng)新三步五環(huán)教學法張麗紅學習目標探索·合作·創(chuàng)新三步五環(huán)教學法、等邊三角形的性質(zhì)和判定進行簡單的計算、推理證明。,構建等腰三角形的知識體系。,數(shù)形結合,轉(zhuǎn)化,方程等數(shù)學思想方法。探索·合作·創(chuàng)新三步五環(huán)教學法名
2025-11-15 13:18
【總結】等腰三角形的判定1、等腰三角形的性質(zhì)?2、等腰三角形的判定方法都有哪些?定義:有兩邊相等的三角形是等腰三角形還有其他方法嗎?導入新課如圖,位于在海上A、B兩處的兩艘救生船接到O處遇險船只的報警,當時測得∠A=∠B.如果這兩艘救生船以同樣的速度同時出發(fā),能不能大約同時趕到出事地點(不考慮風浪因素)?
【總結】有兩條邊相等的三角形叫等腰三角形.(isoscelestriangle)等腰三角形的有關概念腰腰底邊底角底角頂角ABC腰底邊頂角底角∠AAB,ACBC∠B,∠C識別等腰三角形的有關邊、角條件
2025-10-31 05:34
【總結】ABC等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形。相等的兩條邊AB和AC叫做腰;另一條邊BC叫做底邊;兩腰所夾的角∠BAC叫做頂角;底邊與腰的夾角∠ABC和∠ACB叫做底角底角底角腰腰底邊
2025-08-16 00:54
2025-08-16 01:46
【總結】如圖,在△ABC中,AB=AC.DAD⊥BCBD=CD∠BAD=∠CADAD是BC上的高線AD是BC上的中線AD是∠BAC的平分線性質(zhì)1、等腰三角形的兩底角相等:∠B=∠C性質(zhì)2、等腰三角形三線合一性質(zhì)3、等腰三角形是軸對稱圖形,
2025-08-05 10:34
【總結】那一年我們因緣而聚那一年我們風雨同舟現(xiàn)在的你還記得當初的豪情壯志嗎?如圖所示,把一張長方形的紙按圖中虛線對折,并剪去陰影部分,再把它展開,得到的△ABC是怎樣的三角形?一動手操作,得出概念ABCD有兩條邊相等的三角形是等腰三角形。ABC相等
2025-06-12 12:10
【總結】等腰三角形第一課時知識回顧問題探究課堂小結隨堂檢測(1)什么是軸對稱圖形?(2)三角形是軸對稱圖形嗎?(3)什么樣的三角形是軸對稱圖形?知識回顧問題探究課堂小結隨堂檢測活動1探究一:探索等腰三角形的性質(zhì)重點知識★回顧舊知,回憶等腰三角形的概念及腰、底邊、頂角、底角
2025-06-12 12:41
【總結】 等腰三角形 等腰三角形第1課時 等腰三角形的性質(zhì)學前溫故新課早知兩邊 的三角形是等腰三角形. .?,任意兩邊之和 第三邊.?相等 ?180°?大于?學前溫故新課早知1:等腰三角形的兩個 相等(
2025-06-21 12:24
【總結】第十三章軸對稱遵義學練考數(shù)學8上【R】等腰三角形等腰三角形第1課時等腰三角形的性質(zhì)感謝您使用本課件,歡迎您提出寶貴意見!
【總結】第十三章遵義學練考數(shù)學8上【R】等腰三角形等腰三角形第1課時等腰三角形的性質(zhì)感謝您使用本課件,歡迎您提出寶貴意見!
【總結】等腰三角形性質(zhì)的應用——復習課如圖,在△ABC中,AB=AC,點D在AC上,且BD=BC=AD,求△ABC各角的度數(shù)。ABCD121.等邊對等角的應用ABCD12解:∵AB=AC,∴∠ABC=∠C又∵BD=BC=AD,∴∠C=∠
2025-11-15 15:15
【總結】八年級上冊等腰三角形(第4課時)課件說明?本節(jié)課在學習了軸對稱、等邊三角形的性質(zhì)及判定的基礎上,探究直角三角形的一條特殊性質(zhì),它反映了直角三角形中的邊角關系.本節(jié)課是等邊三角形性質(zhì)的簡單運用,同時也為九年級學習銳角三角函數(shù)作了一定的知識儲備.?學習目標:1.探索含30°角
2025-11-15 15:53
【總結】第13章全等三角形等腰三角形2022秋季數(shù)學八年級上冊?HS有條邊相等的三角形叫做等腰三角形.自我診斷1.(黔西南中考)已知一個等腰三角形的兩邊長分別為3和6,則該等腰三角形的周長是.等腰三角形的相等.自我診斷2.(江西中考)如圖1
2025-06-13 13:34