【正文】
Propositional Equivalences命題演算命題演算 命題演算 Propositional EquivalencesDate 1Deren Chen, Zhejiang Univ.Propositional Equivalences命題演算命題演算 命題 (Proposition) 從簡單命題 (atomic proposition)到 復合命題 (positional proposition) 從命題常量 (propositional constant)到 命題變量 (propositional variable) 從復合命題 (positional proposition)到 命題公式 (propositional formulas)Date 2Deren Chen, Zhejiang Univ.Propositional Equivalences命題演算命題演算 永真命題公式( Tautology)公式中的命題變量無論怎樣代入,公式對應(yīng)的真值恒為 T。 永假命題公式( Contradiction)公式中的命題變量無論怎樣代入,公式對應(yīng)的真值恒為 F。 可滿足命題公式( Satisfaction)公式中的命題變量無論怎樣代入,公式對應(yīng)的真值總有一種情況為 T。一般命題公式( Contingency)既不是永真公式也不是永假公式。Date 3Deren Chen, Zhejiang Univ.Propositional Equivalences命題演算命題演算 EXAMPLE 1 We can construct examples of tautologies and contradictions using just one proposition. Consider the truth tables of p∨ p and p∧ p, shown in Table 1. Since p∨ p is always true, it is a tautology. Since p∧ p is always false, it is a contradiction.Date 4Deren Chen, Zhejiang Univ.Propositional Equivalences命題演算命題演算 Table 1Date 5Deren Chen, Zhejiang Univ.Propositional Equivalences命題演算命題演算 DEFINITION 2 The propositions p and q are called logically equivalent if p q is a tautotogy. The notation p q denotes that p and q are logically equivalent.邏輯等值,或邏輯等價Date 6Deren Chen, Zhejiang Univ.Propositional Equivalences命題演算命題演算 EXAMPLE 2 Show that (p∨ q) and p∧ q are logically equiv